Preparación, caracterización y aplicaciones de Carbones activados preparados a partir de lignina Kraft.

by Torné Fernández, Vanessa

Abstract (Summary)
The increasing demand of products highly purified requires the technological development of more selective methods of separation and the understanding of the physical and chemical processes that take place. At the moment, the materials that are mainly used in the methods of separation and purification are porous adsorbent based on zeolites and those of carbonaceous nature. In both cases, its microporous structure allows the separation based on the size and/or forms of molecules of the components that are tried to separate although the carbonaceous materials display advantages as selectivity by the form (flat molecules), high hydrophobicity, high alkaline and acid resistance and thermal stability to higher temperatures in inert atmospheres. The carbonaceous materials can be obtained from a great variety of materials (mineral coals, and biomassic or synthetic materials) and the use of by-products obtained in different industrial processes is a recommended option, not only from the environmental point of view, but also the economic one. Kraft lignin is a very abundant by-product in the industry of manufacture of paper that can be used as precursor in the activated carbon production as it has been study in the pass. The objective of this study is the obtention of carbons mainly microporous by chemical activation with H3PO4 and hydroxides (NaOH and KOH). The operation variables that have been studied are the mass relation between chemical agent and Kraft lignin, the carbonization temperature, the activation time, the volume flow of the atmosphere during the pyrolysis process and the heating rate, since they affect to the physical and chemical properties of the final product. As a result of this study, conclusions related to the reactions that take place due to the presence of different types of activating agents, the products obtained and the operation conditions have been elaborated. This has allowed understanding the reason for which some variables have a more important effect in the final characteristics of the coal, with the purpose of being able to control the development of these properties and, therefore, the final application of the product. In the phosphoric acid activation, the conditions of operation that presents more effect are the carbonization temperature and the mass ratio between the added amount of acid and the Kraft lignin (P/L), increasing the activation. The optimum conditions where higher specific areas are obtained (1250 m2/g) are 600ºC with a P/L of 1.4. In the chemical activation with hydroxides, the carbonization temperature and the mass ratio between activating agent and Kraft lignin (R) also has a very important effect, as it occurs in the activation with phosphoric acid. Nevertheless, the increase of nitrogen volume produces a slight increase of the yield due to the reagent elimination whereas the time of activation and the speed of heating do not have a significant effect. At very severe operation conditions, temperatures higher than 750ºC and R larger than 4, the collapse of the structure is caused. The acid and basic groups develop in a different way depending on the activante agent used, but in general, a greater development when increasing the more significant operation conditions. The analyses of nitrogen adsorption have confirmed the essentially microporous activated carbons are obtained with specific surfaces up to 3000 m2/g that with the strong acidity of the surface, producing an attractive material as adsorbent at temperatures of 750ºC and R of 3.
This document abstract is also available in Spanish.
Bibliographical Information:

Advisor:Fierro Pastor, Vanessa; Montané i Calaf, Daniel

School:Universitat Rovira i Virgili

School Location:Spain

Source Type:Master's Thesis

Keywords:departament d enginyeria química


Date of Publication:09/26/2006

© 2009 All Rights Reserved.