On-site wastewater treatment-Polonite and other filter materials for removal of metals, nitrogen and phosphorus

by Renman, Agnieszka

Abstract (Summary)
Bed filters using reactive materials are an emerging technology for on-site wastewater treatment. Chemical reactions transfer contaminants from the aqueous to the solid phase. Phosphorus is removed from domestic wastewater by sorption to filter materials, which can then be recycled to agriculture as fertilisers and soil amendments. This thesis presents long-term column and field-scale studies of nine filter materials, particularly the novel product Polonite®. Phosphorus, nitro-gen and metals were removed by the mineral-based materials to varying degrees. Polonite and Nordkalk Filtra P demonstrated the largest phosphorus removal capacity, maintaining a PO4-P removal efficiency of >95%. Analysis of filter bed layers in columns with downward wastewater flow, showed that phosphorus, carbon and nitrogen content was vertically distributed, with de-creasing values from surface to base layer. Polonite and Filtra P accumulated 1.9-19 g P kg-1. Nitrogen in wastewater was scarcely removed by the alkaline filter materials, but transformation from NH4-N to NO3-N was >90%. Pot experiments with barley (Hordeum vulgare L.) revealed that after wastewater treatment, slags and Polonite could increase plant production. Batch experi-ments and ATR-FTIR investigations indicated that amorphous tricalcium phosphate (ATCP) was formed in the materials, so some of the accumulated PO4-P was readily available to plants. Low heavy metal contents occurred in the materials, showing that they can be applied as soil amend-ments in agriculture without contamination risks. A full-scale treatment system using Polonite as filter material showed an average PO4-P removal efficiency of 89% for a 92-week period, indicat-ing the robustness of the filter bed technology.
Bibliographical Information:


School:Kungliga Tekniska högskolan

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:TECHNOLOGY; Other technology; Environmental engineering; alkaline materials; heavy metals; mechanisms; nutrient removal; sorption; speciation modelling


Date of Publication:01/01/2008

© 2009 All Rights Reserved.