A new synthetic strategy for low-dimensional compounds : Lone pair cations and alkaline earth spacers

by Fredrickson, Rie Takagi

Abstract (Summary)
Complex transition metals oxyhalides containing a lone pair element, such as tellurium (IV), form an attractive research field because there is a high probability of finding new low-dimensionally arranged compounds and, particularly, a low-dimensionally arranged transition metals substructures, leading to interesting physical properties. Tellurium (IV) can drive the formation of many unusual structures because of its stereochemically active lone pair electrons, E. It commonly takes a coordination of three or four oxygen atoms to form either a TeO3E square pyramid or a TeO3+1E trigonal bipyramid. These lone pairs are very important players involved in lowering the dimensionality of crystal structures. Previous studies in transition metal tellurium (IV) oxohalide quarternary systems revealed a family of compounds, many of which exhibit interesting properties e.g. magnetic frustration. The unique point of this thesis is to employ alkaline earth elements (AE) to augment this ability of lone pair elements to lower the dimensionality of the transition metal arrangements. By this double usage of “chemical scissors” (a lone pair element used in conjunction with alkaline earth elements) we obtained new types of low-dimensionally arranged compounds.This thesis is focused on the syntheses and characterization of a series of compounds in the pentanary (five components) system AE-TeIV-TM-O-X (AE=alkaline earth metal, TM=transition metal and X=halogen), in which nine new compounds were found. The crystal structures of each of these compounds were determined by the single crystal X-ray diffraction data.
Bibliographical Information:


School:Stockholms universitet

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:NATURAL SCIENCES; Chemistry; Inorganic chemistry; Alkaline earth; Lone pair elements; Low-dimensional compounds; oorganisk kemi; Inorganic Chemistry


Date of Publication:01/01/2008

© 2009 All Rights Reserved.