A micromechanical study of the damage mechanics of acrylic particulate composites under thermomechanical loading [electronic resource] /

by Nie, Shihua.

Abstract (Summary)
Summary: The main aim of this dissertation was to characterize the damage mechanism and fatigue behavior of the acrylic particulate composite. This dissertation also investigated how the failure mechanism is influenced by changes in certain parameters including the volume fraction of particle, the interfacial bonding strength, the stiffness and thickness of the interphase, and the CTE mismatch between the particle and the matrix. Monotonic uniaxial tensile and compressive testing under various temperatures and strain rates, isothermal low-cycle mechanical testing and thermal cycling of a plate with a cutout were performed. The influence of the interfacial bonding strength between the particle and the matrix on the failure mechanism of the ATH filled PMMA was investigated using in situ observations under uniaxial loading conditions. For composites with weak interfacial bonding, the debonding is the major damage mode. For composites with strong interfacial bonding, the breakage of the agglomerate of particles is the major damage mode. Experimental studies also demonstrated the significant influence of interfacial bonding strength on the fatigue life of the ATH filled PMMA. The damage was characterized in terms of the elastic modulus degradation, the load-drop parameter, the plastic strain range and the hysteresis dissipation. Identifying the internal state variables that quantify material degradation under thermomechanical loading is an active research field. In this dissertation, the entropy production, which is a measure of the irreversibility of the thermodynamic system, is used as the metric for damage. The close correlation between the damage measured in terms of elastic modulus degradation and that obtained from the finite element simulation results validates the entropy based damage evolution function. A micromechanical model for acrylic particulate composites with imperfect interfacial bonds was proposed. Acrylic particulate composites are treated as three-phase composites consisting of agglomerated particles, bulk matrix and an interfacial transition zone around the agglomerate. The influence of the interfacial bonding and the CTE mismatch between the matrix and the filler on the overall thermomechanical behavior of composites is studied analytically and experimentally. The comparison of analytical simulation with experimental data demonstrated the validity of the proposed micromechanical model for acrylic particulate composites with an imperfect interface. (Abstract shortened by UMI.)
Bibliographical Information:


School:State University of New York at Buffalo

School Location:USA - New York

Source Type:Master's Thesis



Date of Publication:01/01/2005

© 2009 All Rights Reserved.