Details

The maximal subgroups of the Chevalley groups F4(F) where F is a finite or algebraically closed field of characteristic not equal to 2,3

by Magaard, Kay

Abstract (Summary)
NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. We find the conjugacy classes of maximal subgroups of the almost simple groups of type F4(F), where F is a finite or algebraically closed field of characteristic not equal to 2,3. To do this we study F4(F) via its representation as the automorphism group of the 27-dimensional exceptional central simple Jordan Algebra J defined over F. A Jordan Algebra over a field of characteristic not equal to 2 is a nonassociative algebra over a field F satisfying xy = yx and [...] = [...] for all its elements x and y. We can represent Aut(F4(F)) on J as the group of semilinear invertible maps preserving the multiplication. Let G = F4(F) and [...]. We have defined a certain subset of proper nontrivial subalgebras as good. The principal results are as follows: SUBALGEBRA THEOREM: Let F be a finite or algebraically closed field of characteristic not equal to 2,3. Let H be a subgroup of [...] and suppose that H stabilizes a subalgebra. Then H stabilizes a good subalgebra. The conjugacy classes and normalizers of good subalgebras are also given. STRUCTURE THEOREM: Let H be a subgroup of [...] such that [...] is closed but not almost simple. Then H stabilizes a proper nontrivial subalgebra or H is contained in a conjugate of [...]. The action of [...] on J is described and it is shown that [...] is unique up to conjugacy in G. THEOREM : If L is a closed simple nonabelian subgroup of G, then [...] is maximal in [...] only if L is one of the following: [...]. For each member [...] we identify those representations [...] which could give rise to a maximal subgroup of G and show the existence of [...] in G. Up to few exceptions we also determine the number of G conjugacy classes for each equivalence class [...].
Bibliographical Information:

Advisor:Michael Aschbacher; David J. Wales

School:California Institute of Technology

School Location:USA - California

Source Type:Master's Thesis

Keywords:mathematics

ISBN:

Date of Publication:04/16/1990

© 2009 OpenThesis.org. All Rights Reserved.