Details

On the learnibility of Mildly Context-Sensitive languages using positive data and correction queries

by Becerra Bonache, Leonor

Abstract (Summary)
APRENDIBILIDAD DE LENGUAJES SUAVEMENTE DEPENDIENTES DEL CONTEXTO UTILIZANDO DATOS POSITIVOS Y PREGUNTAS DE CORRECCIÓN Con esta tesis doctoral aproximamos la teoría de la inferencia gramatical y los estudios de adquisición del lenguaje, en pos de un objetivo final: ahondar en la comprensión del modo como los niños adquieren su primera lengua mediante la explotación de la teoría inferencial de gramáticas formales. Nuestras tres principales aportaciones son: 1. Introducción de una nueva clase de lenguajes llamada Simple p-dimensional external contextual (SEC). A pesar de que las investigaciones en inferencia gramatical se han centrado en lenguajes regulares o independientes del contexto, en nuestra tesis proponemos centrar esos estudios en clases de lenguajes más relevantes desde un punto de vista lingüístico (familias de lenguajes que ocupan una posición ortogonal en la jerarquía de Chomsky y que son suavemente dependientes del contexto, por ejemplo, SEC). 2. Presentación de un nuevo paradigma de aprendizaje basado en preguntas de corrección. Uno de los principales resultados positivos dentro de la teoría del aprendizaje formal es el hecho de que los autómatas finitos deterministas (DFA) se pueden aprender de manera eficiente utilizando preguntas de pertinencia y preguntas de equivalencia. Teniendo en cuenta que en el aprendizaje de primeras lenguas la corrección de errores puede jugar un papel relevante, en nuestra tesis doctoral hemos introducido un nuevo modelo de aprendizaje que reemplaza las preguntas de pertinencia por preguntas de corrección. 3. Presentación de resultados basados en las dos previas aportaciones. En primer lugar, demostramos que los SEC se pueden aprender a partir de datos positivos. En segundo lugar, demostramos que los DFA se pueden aprender a partir de correcciones y que el número de preguntas se reduce considerablemente. Los resultados obtenidos con esta tesis doctoral suponen una aportación importante para los estudios en inferencia gramatical (hasta el momento las investigaciones en este ámbito se habían centrado principalmente en los aspectos matemáticos de los modelos). Además, estos resultados se podrían extender a diversos campos de aplicación que gozan de plena actualidad, tales como el aprendizaje automático, la robótica, el procesamiento del lenguaje natural y la bioinformática.
This document abstract is also available in English.
Document Full Text
The full text for this document is available in English.
Bibliographical Information:

Advisor:Martín Vide, Carlos

School:Universitat Rovira i Virgili

School Location:Spain

Source Type:Master's Thesis

Keywords:departament de filologies romàniques

ISBN:

Date of Publication:03/06/2006

© 2009 OpenThesis.org. All Rights Reserved.