Details

Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat/Theory and applications of polyphasic dispersed systems to chemostat cellular cultures

by Thierie, Jacques GE

Abstract (Summary)
Résumé Les systèmes microbiologiques naturels (colonne d’eau), semi-naturels (station d’épuration), mais surtout industriels ou de laboratoire (bioréacteurs) sont communément représentés par des modèles mathématiques destinés à l’étude, à la compréhension des phénomènes ou au contrôle des processus (de production, par exemple). Dans l’énorme majorité des cas, lorsque les cellules (procaryotes ou eucaryotes) mises en jeu dans ces systèmes sont en suspension, le formalisme de ces modèles non structurés traite le système comme s’il était homogène. Or, en toute rigueur, il est clair que cette approche n’est qu’une approximation et que nous avons à faire à des phénomènes hétérogènes, formés de plusieurs phases (solide, liquide, gazeuse) intimement mélangées. Nous désignons ces systèmes comme « polyphasiques dispersés » (SPD). Ce sont des systèmes thermodynami-quement instables, (presque) toujours ouverts. La démarche que nous avons entreprise consiste à examiner si le fait de considérer des systèmes dits « homogènes » comme des systèmes hétérogènes (ce qu’ils sont en réalité) apporte, malgré une complication du traitement mathématique, un complément d’information significatif et pertinent. La démarche s’est faite en deux temps : · Une étape purement théorique, destinée à établir de manière rigoureuse et générale les bilans de matière pour chaque composé du système dans chacune de ces phases. · Une étape appliquée, visant à démontrer, au travers d’exemples concrets, la validité du concept et de la démarche. Pour l’étude des applications, pour diverses raisons, nous avons choisi d’étudier un bioréacteur ouvert « simple », le chémostat. Les bilans généraux dérivés à la première étape ont donc été appliqués à ce réacteur et plusieurs exemples, tirés de la littérature, pour la plupart, ont été traités dans le cadre des SPD. Les principaux résultats exposés dans le travail concernent : - sur le plan général, la pertinence d’une partition des systèmes en plusieurs phases, ce qui fait apparaître à la fois des flux d’échange interphasiques (qui n’apparaissent pas dans les systèmes dits monophasiques) et la possibilité de représenter le système à plusieurs niveaux de description. - quant aux applications, outre quelques petits exemples simples, nous proposons 1) un nouveau mécanisme pour représenter la dissipation de l’énergie cellulaire (un domaine encore très controversé), grâce à une approche implicite (c’est-à-dire, sans hypothèses particulières sur la forme des cinétiques intracellulaires) et 2) un modèle simple, original et innovant pour expliquer les signaux chimiques intercellulaires, les phénomènes de seuil et le branchement métabolique respiro-fermentatif en général et chez Saccharomyces cerevisiae en particulier, un mécanisme d’intérêt fondamental et industriel (levuristes et fermentations alcooliques). Abstract. Natural microbiological systems (rivers, seas, …), semi-natural (wastewater treatment plants), but especially industrial or lab-scale systems (bioreactors) are commonly represented by mathematical models intended for the study, the understanding of phenomena or for the control of processes (production, for example). In almost in every case, when the cells (prokaryotic or eukaryotic) concerned in these systems are in suspension, the formalism of these unstructured models treats the system as if it were homogeneous. However, in any rigor, this approach is clearly only an approximation and we have to deal with heterogeneous phenomena, formed of several phases (solid, liquid, gas) closely mixed. We refer to these systems as “polyphasic dispersed systems” (PDS). They are thermodynamically unstable systems, and are (practically) always open. The approach we undertook consists in examining if treating apparent «homogeneous» systems as heterogeneous systems (what they actually are) brings, in spite of some mathematical complications, further significant and relevant information’s. We proceeded in two steps: · A purely theoretical stage, intended to establish in a rigorous and general way the mass balances for each compound in each phases of the system. · A applied stage, aiming at showing, through concrete examples, the soundness of the concept and of the method. Concerning the applications, for several reasons, we chose to study a “simple” open bioreactor: the chemostat. The general balances previously derived in a general way were hence applied to this reactor and a number of examples, mainly obtained from the literature, were treated within the PDS framework. The principal results presented in this work concern: - on the general level, the importance of partitioning the system in different phases, enlightening at the same time interphasic exchange flows (which do not appear in the systems known as monophasic) and the possibility of representing the system on several levels of description. - concerning the applications, in addition to some small simple examples, we propose 1) a new mechanism representing the cellular energy dissipation (a still very controversial field), using an implicit approach (i.e., without particular assumptions about the form of the intracellular kinetics) and 2) a simple, original and inventive model explaining cellular chemical signaling, threshold phenomena and a general metabolic switch occurring during respirofermentative transition. The latter was especially tested on Saccharomyces cerevisiae data to interpret the Crabtree effect in yeast, a mechanism of fundamental and industrial importance (in connection with baker’s yeast production and alcoholic fermentations).
Bibliographical Information:

Advisor:AGATHOS, Spiros; SIMON, Jean-Paul; STALON, Victor; PENNINCKX, Michel; HUEZ, Georges; DROOGMANS, Louis; HALLOIN, Véronique

School:Université libre de Bruxelles

School Location:Belgium

Source Type:Master's Thesis

Keywords:signaux cellulaires cellular signalling ingéniérie métabolique metabolic engineering spd pds dissipation d énergie energy spilling maintenance flux métaboliques fluxes flocs bactériens bacterial saccharomyces cerevisiae

ISBN:

Date of Publication:09/05/2005

© 2009 OpenThesis.org. All Rights Reserved.