Identificação de interações proteína-proteína entre NS5 do vírus da febre amarela e proteínas celulares.

by Ferrari Sarkis, Maria Carolina

Abstract (Summary)
Yellow fever is an infectious disease caused by the yellow fever virus (YFV), a Flavivirus transmitted to humans by Aedes aegypti mosquitoes. Despite the existence of the yellow fever vaccine, the disease is endemic in South America and Africa, causing public health problems such as dispersed outbreaks, epidemics with variable impact and the risk of re-emergency of the urban cycle due to the occurrence of sylvatic disease. Aim. The knowledge of the components of YFV replication complex is still incipient but it is known that there are interactions among viral RNA, viral proteins and host proteins and, due to evidences of the existence of protein-protein interactions related to the NS5 protein of other Flavivirus, the target of our study was YFV NS5 protein. Once protein-protein interactions present basic importance for the activation, the regulation and the control of diverse biologic functions related to these interactions, the identification and the characterization of them are essential for a better comprehension of the pathogenesis and for the rational design of drugs for YFV. Material and Method. The YFV NS5 gene was divided in its two domains, which were independently cloned in a GAL4 DNA-BD plasmid, generating the methyltransferase (MT) and RNA polymerase (RNApol) baits. A two-hybrid system screening in Saccharomyces cerevisiae AH109 strain was performed utilizing RNApol bait and cDNA library of Hela cells, which was cloned in a GAL4 AD plasmid. MT bait showed to be toxic for the yeast. Results. All 204 obtained transformants were tested for activation of reporter genes HIS3, ADE2 and lacZ from AH109 and only 35 samples indicated positivity to, at least, two of the reporter genes assessed. Thirty three distinct cellular protein partners of the RNApol NS5 were identified after the sequencing of the clones and the comparison of its sequences with GenBank. Proteins Snf5, p54NRB, HMG20B, U1A, eIF3S6IP, GIPC PDZ and MIF were chosen for next experiments. A plasmid linkage with these proteins was performed to exclude the possibility of false-positive clones and to confirm the protein-protein interactions identified in the initial screening. RNApol regions responsible for the Snf5 and eIF3S6IP interactions were mapped and a region of approximately 80 aminoacids was identified as the minimum domain requested for the interactions, called fragment A. Conclusion. The prominence of this YFV fragment as a determinant of protein interactions became more evident when its sequence was compared to the sequences of other Flavivirus, signalizing a homology from aminoacid 20 to 80, demonstrating that this fragment is a conserved region. Moreover, the production of a similarity model of RNA polymerase domain of YFV NS5 protein, using the known DENV NS5 protein structure, showed that the region of interaction is exposed and potentially capable of forming interactions.
This document abstract is also available in Portuguese.
Bibliographical Information:

Advisor:Claudio Antonio Bonjardim; Eloiza Helena Tajara da Silva; Maurício Lacerda Nogueira

School:Faculdade de Medicina de São José do Rio Preto

School Location:Brazil

Source Type:Master's Thesis

Keywords:Interações Proteína-proteína Yellow Fever Protein-protein interaction Yeast Two-hybrid system Epidemiology


Date of Publication:12/04/2007

© 2009 All Rights Reserved.