Details

Detecção de crises epilépticas a partir de sinais eletroencefalográficos

by Parreira, Fábio José

Abstract (Summary)
A identificação de fenômenos epileptogênicos por meio de registros eletroencefalográficos (EEG) não invasivos se constitui numa área de pesquisa que apresenta grandes desafios devido µa presença de diversos distúrbios (artefatos) que dificultam a análise destes registros. Tal tarefa é de extrema importância uma vez que o diagnóstico e o tratamento da epilepsia requer uma avaliação clínica baseada no EEG do paciente. Neste contexto, este trabalho apresenta alguns sistemas para melhorar a identificação dos sinais de crise epilépticas baseados em técnicas de processamento de sinais e de inteligência artificial. Estas propostas são baseadas em uma plataforma que permite a visualização e análise dos arquivos de EEG. Para a detecção de eventos patológicos, são propostas quatro arquiteturas.Na arquitetura com análise multi-resolução foram utilizadas duas famílias wavelet (WT) para a extração de características, redes neurais artificiais e sistema especialista para o reconhecimento dos sinais de crise. Com essa arquitetura, o melhor resultado conseguido foi uma taxa de acerto de 71,6% no reconhecimento dos sinais patológicos. A sensibilidade ficou em torno de 83,3%, a especificidade 70,5% e a precisão 76,9%. Já a arquitetura estatística é composta de ferramentas para extração de características diretamente do sinal. A melhor taxa de acerto ficou em torno de 85,3%, o erro obtido foi de 14,3% e os indefinidos em torno de 1%. A sensibilidade foi de 97,4%, a especificidade 82,1% e a precisão 89,75%. A arquitetura de análise multi-resolução com modelo auto-regressivo (AR) possui duas etapas para extração de características: a wavelet" (WT), seguida do modelo AR. Para essa arquitetura foram utilizados dois modelos AR. A melhor taxa de acerto para o modelo Yule-Walker" ficou em torno de 87,9%, com ordem 10. Já para os resultados do modeloBurg", a melhor taxa de acerto foi de 88,5% com ordem 7. A última arquitetura é um modelo híbrido com várias ferramentas de extração de características no domínio do tempo, freqüência (FFT) e tempo-freqüência (WT). Nessa arquitetura a taxa de acerto ficou em 95,1%, o erro em 4,1% e os indefinidos em 5,5%. A especificidade foi de 91,5%, a sensibilidade obtida foi de 90,5% e a precisão em torno de 91,1%. Todos os sistemas desenvolvidos apresentaram resultados coerentes com os fenômenos demarcados pelos eletroencefalografistas e aqueles revelados pelas arquiteturas. Dentre as propostas, a arquitetura híbrida apresentou o melhor desempenho.
This document abstract is also available in English.
Bibliographical Information:

Advisor:Keiji Yamanaka; Joao Batista Destro Filho; Gerson Ballester; Shigueo Nomura; Wilson Felipe Pereira

School:Universidade Federal de Uberlândia

School Location:Brazil

Source Type:Master's Thesis

Keywords:Eletroencefalograma Modelo auto-regressivo Redes neurais Detecção ENGENHARIA ELETRICA Engenharia biomédica Eletroencefalografia

ISBN:

Date of Publication:05/30/2006

© 2009 OpenThesis.org. All Rights Reserved.