Details

The applications of metal nanoparticles : Biosensor and surface assisted laser desorption/ionization mass spectrometry

by Wu, Hsin-pin

Abstract (Summary)
The thesis is divided into four sections. 1. Sample-first preparation: A method for surface-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of cyclic oligosaccharides¡GIn this work, we report the application of a sample first preparation method for the analysis of cyclic oligosaccharides when using bare AuNPs as the assisted matrix. In the sample first method, the analyte is deposited first and then followed by the bare AuNPs. The cyclic oligosaccharides, including £\-, £]-, and£^-cycodextrin (CD), are difficult to ionize by MALDI-MS, but they could be cationized very efficiently using bare AuNPs as matrixes in combination with a sample first preparation method. The sample first method not only provides high sensitivity for the measurement of neutral carbohydrate but also improves the spot homogeneity. This practical method was further validated by the analyses of biological samples, including neutral carbohydrate, neutral steroid, aminothiols, and peptides. 2. Gold nanoparticles as assisted matrix for detecting small biomolecules from high salt solutions through laser desorption/ionization mass spectrometry¡GThe neutral steroid and carbohydrates, which are difficult to be ionized by using MALDI, but cationized very efficiently by SALDI coupled with the sample first preparation method even if they are dissolved in a high-concentration NaCl solution. Under identical conditions, this practical method was further validated by the analysis of indolamines and peptides. It has also been utilized to analyze the small biomolecules in urine samples. 3. Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching¡GIn contrast to these studies, we report a simple approach for the selective detection of DA, L-DOPA, and adrenaline by phosphate-modified TiO2 (P-TiO2) NPs in the presence of fluorescein. After the binding of DA, the P-TiO2 NPs become neutral and even positively charged. The adsorption of fluorescein on the particles results in the quenching of fluorescein by TiO2-DA complexes, which have strong absorption at 428 nm. By monitoring the decreases in fluorescence at 520 nm for fluorescein, we calculated the limits of detection (LODs) for DA, L-DOPA, and adrenaline at a signal-to-noise (S/N) ratio of 3, which were 33.5, 81.8, and 20.3 nM, respectively. The results imply that the proposed methods have great potential for use in the selective analysis of catecholamines in biological samples and clinical applications. 4. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine¡G Under acidic conditions, fluorosurfactant (FSN)-capped AuNPs are aggregated in the presence of homocysteine (HCys) and cysteine (Cys) but not in the presence of cysteinylglycine, glutathione, and £^-glutamycysteine. When adding NaOH to a solution of HCys, the five-membered ring transition state is formed through intramolecular hydrogen abstraction. By contrast, it is difficult for Cys to form a fourmembered ring transition state after Cys has been pretreated with NaOH. As a result, the HCys-induced aggregation of the FSN-capped AuNPs is suppressed because the five-membered ring transition state exhibits relatively larger steric hindrance and has stronger interaction with the FSN molecules. Thus, we can discriminate between Cys and HCys on the basis of different aggregation kinetics. Under the optimum condition, we have validated the applicability of our method through the analyses of Cys in urine samples. It is believed that this approach has great potential for the detection of Cys in biological samples.
Bibliographical Information:

Advisor:Jen-taie Shiea; Wei-lung Tzeng; Fu-ken Liu

School:National Sun Yat-Sen University

School Location:China - Taiwan

Source Type:Master's Thesis

Keywords:saldi nanoparticles surface assisted laser desorption ionization mass spectrometry

ISBN:

Date of Publication:07/14/2008

© 2009 OpenThesis.org. All Rights Reserved.