Document Text (Pages 61-70) Back to Document

Workplace Assessment: Determination of Hazards Profile Using a Flexible Risk Assessment Method. Töökeskkonna hindamine: ohtude profiili määramine paindliku riskianalüüsi meetodi abil

by Reinhold, Karin, PhD

Page 61

EC (European Commission). 2003. 2003/10/EC. Council directive on the
minimum health and safety requirements regarding to the exposure of workers to
the risks arising from physical factors (noise). European Commission, Brussels.
EC (European Council). 2006. Regulation (EC) No 1907/2006 of the European
Parliament and of the Council of 18 December 2006 concerning the Registration,
Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a
European Chemicals Agency. Cited:, 03 March 2009.
EN. 1993. European Standard EN 481. Workplace atmospheres. Size fraction
definitions for measurement of airborne particles. European Committee for
Standardization, Brussels.
EN. 2002. European Standard EN 12464-1. Light and lighting. Lighting of work
places. Indoor work places. European Committee for Standardization, Brussels.
EN. 2007. European Standard EN 15251. Indoor environmental input parameters
for design and assessment of energy performance of buildings addressing indoor
air quality, thermal environment, lighting and acoustics. European Committee for
Standardization, Brussels.
ESAW (European Statistics on accidents at work). 2001. Methodology. Cited:, 26
June 2008.
Eurofound. 2007. European Foundation for the Improvement of Living and
Working Conditions. Annual review of working conditions in the EU 2006-2007.
Office for Official Publications of the European Communities, Luxembourg.
Eurostat. 2001. European Statistics on accidents at work (ESAW). Methodology.
Cited:, 05 July 2008.
Eurostat. 2008a. European Statistics on Accidents at Work (ESAW) and
commuting accidents: Accidents at work - incidence rate. Cited:, 05 July 2008.
Eurostat, 2008b. European Statistics on Accidents at Work (ESAW) and
commuting accidents: Serious accidents at work - total. Cited:, 05 July 2008.
EVS (Estonian Centre for Standardisation). 2004. Estonian Standard EVS 845-
2. Building ventilation design. Part 2: Selection of ventilation equipment. Estonian
Centre for Standardisation, Tallinn (in Estonian).
Fairhurst, S. 2003. Hazard and risk assessment of industrial chemicals in the
occupational context in Europe: some current issues. Food and Chemical
Toxicology, 41, 1454-1461.
FIOH (Finnish Institution of Occupational Health). 2006. 2005 statistics –
Occupational diseases and suspected cases of occupational disease. Cited:
onal+disease.htm, 27 June 2008.
FIOH (Finnish Institute of Occupational Health). 2008. Onnettomuuden vaaraa
aiheuttavat aineet - turvallisuusohjeet (OVA-ohjeet). Cited:,
28 August 2008 (in Finnish).


Page 62

Flechsig, R., Nedo, G. 1990. Hazardous health effects of occupational exposure to
wood dust. Industrial Health, 28(3), 101-119.
Fontoynont, M. 2002. Perceived performance of daylighting systems: lighting
efficacy and agreeableness. Solar Energy, 73(2), 83-94.
Foth, H., Hayes, A.W. 2008. Concept of REACH and impact on evaluation of
chemicals. Human & Experimental Toxicology, 27, 5-21.
Gardner, D., Carlopio, J., Fonteyn, P.N., Cross, J.A. 1999. Mechanical
equipment injuries in small manufacturing businesses. Knowledge, behavioural,
and management issues. International Journal of Occupational Safety and
Ergonomics, 5(1), 59-71.
Gardner, R. J., Oldershaw, P. J. 1991. Development of pragmatic exposurecontrol
concentrations based on packaging regulation risk phrases. Annals of
Occupational Hygiene, 35, 51-59.
Gunning J., Eaton J., Ferrier S., Frumin E., Kerr M., King A., Maltby, J.
2001. Ergonomic Handbook for the Clothing Industry. Union of Needletrades,
Industrial and Textile Employees, Toronto.
Gustafson, T., Dahlman-Höglund, A., Nilsson, K., Ström, K., Tornling, G.,
Toren, K. 2007. Occupational exposure and severe pulmonary fibrosis.
Respiratory Medicine, 101, 2207-2212.
Görnemann, O. 2007. “SCRAM” Scalable Risk Analysis and Evaluation Method.
In Aven, T. and Vinnem, J.E. (ed.). Risk, Reliability and Societal Safety.
Taylor&Francis, London.
Hasle, P., Limborg, H.J. 2006. A Review of the Literature on Preventive
Occupational Health and Safety Activities in Small Enterprises. Industrial Health,
44, 6-12.
Harms-Ringdahl, L. 2001. Safety Analysis: Principles and Practice in
Occupational Safety. Second Edition. Taylor&Francis, London.
Harper, M. 2004. Assessing workplace chemical exposures: the role of exposure
monitoring. Journal of Environmental Monitoring, 6, 404-412.
Hassim, M.H., Edwards, D.W. 2006. Development of a methodology for
assessing inherent occupational health hazards. Process Safety and Environmental
Protection, 84(B5), 378-390.
Helland, M., Horgen, G., Kvikstad, T. M., Garthus, T., Bruenech, J. R. 2008.
Musculoskeletal, visual and psychosocial stress in VDU operators after moving to
an ergonomically designed office landscape. Applied Ergonomics, 39, 284-295.
Hendershot, D. 2006. Process Safety. Journal of Chemical Health and Safety,
November/December 2006, 37-38.
HSE (Health and Safety Executive). 1994. Five Steps to Risk Assessment
(INDG163). HMSO, London.
HSE (Health and Safety Executive). 2002. EH40/2002: Occupational Exposure
Limits, 2002. HSE Books, Sudbury, UK.
HSE (Health and Safety Executive). 2003 COSHH essentials: Easy steps to
control chemicals. Control of Substances Hazardous to Health. Regulations
HSG193 (Second edition). HSE Books, London.


Page 63

IAEA (International Atomic Energy Agency). 2002. Safety culture in nuclear
installations: Guidance for use in the enhancement of safety culture. IAEA, Vienna.
IARC (International Agency for Research on Cancer). 1995. Monographs on
the Evaluation of Carcinogenic Risks to Humans. Wood Dust and Formaldehyde.
Cited:, 18 March
ILO. 2001. Ambient factors in the workplace. ILO Code of Practice. International
Labour Office, Geneva.
ILO. 2005. International Chemical Control Toolkit. Draft guidelines. International
Labour Office. Cited:
ctrl_banding/toolkit/main_guide.pdf, 10 December 2008.
IPCS (International Programme on Chemical Safety). 1983. Styrene.
Environmental Health Criteria 26. Cited:
ehc/ehc26.htm, 10 December 2008.
IPCS (International Programme on Chemical Safety). 1987a. Butanols – 4
isomers. Environmental Health Criteria 65. Cited:
documents/ehc/ehc/ehc65.htm, 10 December 2008.
IPCS (International Programme on Chemical Safety). 1987b. Toluene.
Environmental Health Criteria 52. Cited:
ehc/ehc52.htm, 11 December 2008.
IPCS (International Programme on Chemical Safety). 1989. Formaldehyde.
Environmental Health Criteria 89. Cited:
ehc/ehc89.htm, 15 August 2008.
IPCS (International Programme on Chemical Safety). 1997. Xylenes.
Environmental Health Criteria 190. Cited:
ehc/ehc190.htm, 10 December 2008.
ISO. 1990. International standard ISO 1999. Acoustics – Determination of
occupational noise exposure and estimation of noise-induced hearing impairment.
International Organization of Standardization, Geneva.
ISO. 1997. International standard ISO 9612. Acoustics – Guidelines for the
measurement and assessment of exposure to noise in a working environment.
International Organization of Standardization, Geneva.
ISO. 1998. International standard ISO 7726. Thermal environments – Instruments
and methods for measuring physical quantities. International Organization of
Standardization, Geneva.
ISO. 2001. International Standard ISO 10882-1. Health and safety in welding and
allied processes – Sampling of airborne particles and gases in the operator's
breathing zone – Part 1: Sampling of airborne particles. International Organization
of Standardization, Geneva.
ISO. 2002. International Standard ISO/CIE 8995-1. Lighting of indoor work
places - Part 1: Indoor. International Organization of Standardization, Geneva.
ISO. 2007. International Standard ISO/TR 14121-2. Safety of machinery - Risk
assessment - Part 2: Practical guidance and examples of methods. International
Organization of Standardization, Geneva.


Page 64

Jacobsen, G., Schlünssen, V., Schaumburg, I., Taudorf, E., Sigsgaard, T. 2008.
Longitudinal lung function decline and wood dust exposure in the furniture
industry. European Respiratory Journal, 31, 334-342.
Jensen, P.L., Alstrup, L., Thoft, E. 2001. Workplace assessment: a tool for
occupational health and safety management in small firms? Applied Ergonomics,
32, 433-440.
Johnson, D. 1991. Field studies: industrial exposures. The Journal of the
Acoustical Society of America, 90(1), 170-174.
Jones, R.M., Nicas, M. 2006. Margins of Safety Provided by COSHH Essentials
and the ILO Chemical Control Toolkit. Annals of Occupational Hygiene, 50, 149-
Kahn, H., Moks, M. 1998. Working conditions and working ability of bus drivers
in Tallinn: scientific-practical research. EKMI&TTK, Tallinn (in Estonian).
Kahn, H., Moks, M., Pille, V., Tuulik, V. 2003. A detailed risk assessment is
required for the diagnosis of physical overload diseases. Estonian Newsletter on
Occupational Health and Safety, 1, 5-7 (in Estonian).
Karltun, J., Eklund, J. 1997. Woodworking. The Workplace Volume 2. Ed:
Brune, D. International Occupational Safety and Health Information Centre,
Geneva and Scandinavian Science Publisher, Oslo, 524-547.
Kauppinen, T., Vincent, R., Liukkonen, T., et al. 2006. Occupational Exposure
to Inhalable Wood Dust in the Member States of the European Union. Annals of
Occupational Hygiene, 50(6), 549-561.
Kempinen, M., Kurppa, K. 2004. Sectoral Profile on occupational health and
safety in Estonian agriculture. Within the EST-FIN Twinning on Occupational
Health Services. Finnish Institute of Occupational Health, Helsinki.
Kruus, K., Möldre, M., Käär, U. 2001. The internal audit and risk analysis in the
work environment. National Labour Inspectorate. Cited:, 20 April 2008.
Labour Inspectorate. 2008. Annual report of working environment, 2007. Cited:, 4 July
Lamm, F. 1997. Small businesses and OH&S advisors. Safety Science, 25, 153-
Le Coze, J.-C. 2005. Are organizations too complex to be integrated in technical
risk assessment and current safety audit? Safety Science, 43, 613-638.
Lees, F.P. 1980. Loss Prevention in the Process Industries. Butterworths, London.
Maciejewska, A., Wojtczak, J., Bielichowska-Cybula, G., Domańska, A., Dutkiewicz,
J., Mołocznik, A. 1993. Biological effect of wood dust. Medycyna Pracy
44(3), 277-288 (in Polish, abstract in English).
Makin, A.M., Winder, C. 2008 A new conceptual framework to improve the
application of occupational health and safety management systems. Safety Science,
46, 935-948.
Milczarek, M., Szczecinska, K. 2006. Workers’ Active Involvement in the
Improvement of Occupational Safety and Health in a Textile Enterprise – A Case
Study. International Journal of Occupational Safety and Ergonomics 12(1), 69-77.


Page 65

Morata, T., Dunn, D., Kretchmer, L., Lemasters, G., Keith, R. 1993. Effects of
occupational exposure to organic solvents and noise on hearing. Scandinavian
Journal of Work Environment and Health, 19(4), 245-254.
Mäkinen, M., Hämäläinen, M., Forsman, K., Liesivuori, J. 2002. Chemical
Exposure and Risk Assessment at Workplaces – Modelling Approach, Applied
Occupational and Environmental Hygiene, 17(11), 744-749.
Määttä, J., Majuri, M.-L., Luukkonen, R., Lauerma,A., Husgafvel-Pursiainen,
K., Alenius, H., Savolainen, K. 2005. Characterization of oak and birch dustinduced
expression of cytokines and chemokines in mouse macrophage RAW
264.7 cells. Toxicology, 215(1-2), 25-36.
NIOSH (The National Institute for Occupational Safety and Health). 1994.
Documentation for Immediately Dangerous to Life or Health Concentrations
(IDLH): NIOSH Chemical Listing and Documentation of Revised IDLH Values
(as of 3/1/95) Cited:, 12 December
NPFA (National Fire Protection Association). 2007. NFPA 704: Standard
System for the Identification of the Hazards of Materials for Emergency Response.
Cited:, 26 February 2009.
Nylander, L.A., Dement, J.M. 1993. Carcinogenic effects of wood dust: review
and discussion. American Journal of Industrial Medicine, 24, 619-647.
Occupational Health and Safety Act. 1999. RT I 1999, 60, 616. Cited:, 25 June 2008.
O’Hara, R., Dickety, N., Weyman, A. 2005. Good Practice in Assessing
Workplace Risks by Small and Medium-sized Enterprises. Risk Management: An
International Journal, 7(1), 31-41.
OSHA (Occupational Safety and Health Administration). 2008. Principal
effect(s) of exposure to substances, listed by OSHA Health Code and Health
Effects. Field Operations Manual, OSHA Instruction CPL 2.45B, chapter IV Cited:, 12 December 2008.
Papazoglou, I.A. 1998. Functional block diagrams and automated construction of
event trees. Reliability Engineering and System Safety, 61, 185-214.
Papazoglou, I.A., Ale, B.J.M. 2007. Logical model for quantification of
occupational risk, Reliability Engineering and System Safety, 92, 785-803.
Powazka, E., Pawlas, K., Zahorska-Markiewicz, B., Zejda, J.E. 2002. A crosssectional
study of occupational noise exposure and blood pressure in steelworkers.
Noise & Health, 5 (17), 15-22.
Rachiotis, G., Alexopoulos, C., Drivas, S. 2006. Occupational exposure to noise,
and hearing function among electro production workers. Auris Nasus Larynx, 33,
Rantanen, S., Pääkkönen, R. 1999. Risk Assessment and Management of
Occupational Exposure to Chemical and Physical Factors. Finnish Institute of
Occupational Health, Helsinki (in Finnish).
Rea, M.S., Quellette, M.J. 1991. Relative visual performance: A basis for
application. Lighting Research and Technology, 23, 139-153.


Page 66

Reinhold, K., Järvis, M., Tint, P. 2008a. Workplace risk assessment as the main
tool for prevention of accidents. Proceedings of the WOS 2008, 30 September – 2
October, 2008, Crete. CD-ROM.
Reinhold, K., Tint, P., Tuulik, V., Saarik, S. 2008b. Innovations at Workplace:
Improvement of Ergonomics. Engineering Economics, 5(60), 85-94.
Reinhold, K., Järvis, M., Tint, P. 2009. Risk Observatory – a Tool for Improving
Safety and Health and the Workplaces. International Journal of Occupational
Safety and Ergonomics, 15(1), 1-12.
Reinhold, K., Lell, K. 2003. Improving garment workers’ ergonomics. In Nordic
Ergonomic Society 35th Annual Conference Proceedings: Mind and Body in a
Technological World, Svansprent, Reykjavik, 287-290.
Reinhold, K., Tint, P., Kiivet, G. 2006. Risk Assessment in Textile and Wood
Processing Industry, International Journal of Reliability, Quality and safety
Engineering 13 (2): 115-125.
Remeza, I., Shestakovs, B. 2005. Risk factors and health protection of employees
working in sewing industry. In Abstracts of the International Conference on
Occupational Health Services 2005. Edita, Helsinki.
Resolution of the Estonian Government. 2007a. No. 108 of 12 April 2007 on the
occupational health and safety requirements for noisy work environment, the
occupational exposure limits for noise and measurement of noise level. State
Gazette in Estonia, RTL 2007, 34, 214.
Resolution of the Estonian Government. 2007b. No. 223 of 23 October 2007 on
the exposure limits of chemical agents in the work environment. State Gazette in
Estonia, RTL 2007, 55, 369.
Resolution of the Ministry of Social Affairs. 1995. No. 66 of 28 December 1995
on the occupational health requirements for microclimate. State Gazette in Estonia,
RTL 1996, 13, 98.
Ridgway, P., Nixon, T.E., Leach, J.-P. 2003. Occupational exposure to organic
solvents and long-term nervous system damage detectable by brain imaging,
neurophysiology or histopathology. Food and Chemical Toxicology, 41, 153-187.
Rjazanov, V., Kauppinen, T., Veidebaum, T. 2003. Implementation of
international information system on occupational exposure to carcinogens –
CAREX in Estonia. Meditsina truda I promõšlennaja ekoloogia, 2, 17- 21 (in
Roche L., Dewey E., Littlefair P. J. 2000. Occupant reactions to daylight in
offices. Lighting Research and Technology, 32, 119–126.
Ruohiainen, V. 1990. The quality assessment of safety analysis. Publication 61.
Technical Research Centre of Finland, Espoo.
Ruohiainen, V., Gunnerhed, M. 2002. Development of international risk analysis
standards. Safety Science, 40, 57-67.
Russel, R.M., Maidment, S.C., Brooke, I., Topping, M.D. 1998. An introduction
to a UK scheme to help small firms control health risks from chemicals. Annals of
Occupational Hygiene, 42, 367-376.


Page 67

Saarela, K.L. 1991. Promoting safety in industry: Focus on informational
campaigns and participative programs. Academic dissertation. Helsinki.
Salminen, S., Saari, J., Saarela, K.-L., Rasanen, T. 1993. Organizational factors
influencing serious occupational accidents. Scandinavian Journal of Work,
Environment and Health, 19, 257-352.
Sataloff, R.T., Sataloff, J. 2006. Occupational hearing loss. Third Edition. Taylor
& Francis, Boca Raton.
Schlunssen, V., Vinzents, P.S., Mikkelsen, A.E., Schaumburg, I. 2001. Wood
dust exposure in the Danish furniture industry using conventional and passive
monitors. Annals of Occupational Hygiene, 45, 157-164.
Seppänen, O., Vuolle, M. 2000. Cost effectiveness of some remedial measures to
control summer time temperatures in an office building. Health Buildings 2000,
ISIAQ 6th International Conference, Espoo, Finland, Vol. I, 665-670.
Shamssain, M.H. 1992. Pulmonary function and symptoms in workers exposed to
wood dust. Thorax, 47, 84-87.
Sliwinska-Kowalska, M., Zamyslowska-Szmytke, E., Szymczak, W., Kotyloa,
P., Fiszera, M., Wesolowskic, W., Pawlaczyk-Luszczynska, M. 2005.
Exacerbation of noise-induced hearing loss by co-exposure to workplace
chemicals. Environmental Toxicology and Pharmacology, 19, 547-553.
Smith, N.A. 2000. Lighting for Health and Safety. Elsevier, London.
Solberg, Ø. 2007. On the use of risk analyses – supporting decisions and
regulation in transporting dangerous goods. In Aven, T. and Vinnem, J.E. (ed.).
Risk, Reliability and Societal Safety. Taylor&Francis, London.
Soresen, O.H., Hasle, P., Bach, E. 2007. Working in small enterprises – Is there a
special risk? Safety Science, 45, 1044-1059.
Starck, J.P, Toppila, E., Pyykkö, I. 2004. Industrial hearing loss. Cited:, 24 July 2008.
Stevens, G. 1999. Features – Workplaces injuries in small and large manufacturing
workplaces – An analysis of the risks of fatal and non-fatal injuries, including
figures for 1994/5-1995/6. Labour Market trends, 107, 19-26.
Stenton, S.C. 2004. Occupational Airway Disease. Medicine, 32(1), 83-85.
Taal, H. 1999. Risks working with display units. Investigations in Work Sciences,
1, 38-39.
Tait, K., Metha, M. 1997. Validation of the Workplace Exposure Assessment
Expert System (WORKBOOK). American Industrial Hygiene Association Journal,
58:8, 592-602.
Tickner, J., Friar, J., Creely, K., Cherrie, J.W., Pryde, E., Kingston, J. 2005.
Development of the EASE model. Annals of Occupational Hygiene, 49(2), 103-
Timbrell, J. 2002. Introduction to Toxicology. Third Edition. Taylor&Francis,
Tint, P. 1998. Risk Assessment in the Working Environment in Estonia.
International Journal of Occupational Safety and Ergonomics, 2, 237-248.


Page 68

Tint, P., Järvis, M., Reinhold, K. 2008. Risk assessment - still the main challenge
for improvement of safety culture at enterprise. Policy and Practise in Health and
Safety, UK. (manuscript under review)
Toppila, E. 2000. A systems approach to individual hearing conservation.
Academic dissertation. Helsinki.
Topping, M.D., Williams, C.R., Devine, J.M. 1998. Industry’s perception and use
of occupational exposure limits. Annals of Occupational Hygiene, 42, 357-366.
Tuulik, V. 1995. Functional disorders of the central nervous system of chemical
workers. Estonian Newsletter on Occupational Health and Safety 1995, 1,19-20 (in
Tuulik, V. 1996. The functional state of the central nervous system in chemical
stress. International Journal of Stress Management, 2, 107-115.
United Nations. 2003. Globally Harmonized System of Classification and
Labeling of Chemicals (GHS). United Nations, New York.
Van Thriel C., Kiesswetter E., Blaszkewicz M., Golka K., Seeber A. 2003.
Neurobehavioral effects during experimental exposure to 1-octanol and
isopropanol. Scandinavian Journal of Work, Environment & Health, 2, 143-151.
Vare, T. 2008. Over 10 occupational accidents happen in Estonia per day.
Business life overview, 30-39 (in Estonian).
Vassie, L.H., Lucas, W.R. 2001. An assessment of health and safety management
within working groups in the UK manufacturing sector. Journal of Safety
Research, 32, 479-490.
Vezina, N., Tierney D., Messing, K. 1992. When is light work heavy?
Components of the physical workload of sewing machine operators working at
piecework rates. Applied Ergonomics, 23(4), 268-276.
Vrendeburg, A.G. 2002. Organizational safety: Which management practices are
most effective in reducing employee injury rates? Journal of Safety Research, 33,
Walker, D., Tait, R. 2004. Health and safety management in small enterprises: an
effective low cost approach. Safety Science, 42, 69-83.
Walters, D.R.. 1996. Health and safety strategies in Europe. Journal of Loss
Prevention in Process Industries, 9(5), 297-308.
Wiseman, J., Gilbert, F. 2002. COSHH essentials: survey of firms purchasing this
guidance. HSE contract research report 434. HMSO, Norwich.
Witterseh, T., Wyon, D.P., Clausen, G. 2002. The effects of moderate heat stress
and open-plan office noise distraction on office work. Indoor Air '02 Proceedings
of the 9th International Conference on Indoor Air Quality and Climate, 4, 1084-
Woodruff, J.M. 2005. Consequence and likelihood in risk estimation: A matter of
balance in UK health and safety risk assessment practice. Safety Science, 43, 345-


Page 69


The present study was aimed at developing a new comprehensive risk assessment
method to assess hazards at workplaces since risk assessment is considered as the
foundation for pro-active occupational health and safety management in enterprises
and is an important element in European legislation in occupational health and
safety. Some of the existing workplace risk assessment methods were overviewed
in the literature review. The core criteria and specific requirements for the new
method were set before developing the new model. The main issues included user
friendliness, determination of risk levels by quantitative data, clear differentiation
of acceptable and unacceptable risk areas, applicability for various organizations
encountering either small- or large-scale occupational hazards, etc.

As a result, the thesis offers a flexible risk assessment method based on a twostep
model that could be enlarged up to a six-step model according to the size of
the enterprise, combination of hazards profile and experiences of the safety
personnel. Criteria for determining risk levels of the main hazards in Estonian
industries – inconvenient indoor climate, poorly organized lighting, excessive
noise, chemicals and dust – based on the five-step flexible risk assessment method
were developed. Measurements of occupational hazards were conducted in 18
manufacturing enterprises and results were analysed. Excessive noise, as one of the
main health hazards in manufacturing, was studied extensively and risk for noiseinduced
hearing impairment was estimated. The risk criteria for four neurotoxic
chemicals (butanol, styrene, xylene and toluene) present in the wood processing
industry were determined. Among dusts, wood dust was found to be of the utmost
concern and therefore, risk criteria for wood dust were presented.

Two case studies were added as the implementation of the flexible risk
assessment method. The studies showed that the method created by the authors is
viable and applicable in the selected industries for assessing physical and chemical
risks. The basic trial version of the software tool of the model was accepted by the
test users as user-friendly, comprehensive and transparent. The test users
emphasized the benefits of illustrative characteristics, which is a valuable tool for
employees to get the first information about occupational hazards. The
methodology can be used in any kind of company, but small and medium-sized
companies are preferred since large companies may find a need to implement a
more sophisticated and time-consuming approach.

In the current thesis, the investigation of occupational hazards is limited to
measurable hazards only. Attempts to integrate other hazards, such as psychosocial
and physiological hazards, to the same model have been made, but these need
further investigation and are not covered in the present study. The method, in the
current stage, identifies the risk level of a hazard, but does not offer direct advice
on the selection of adequate or suitable control measures. The general hierarchy of
control measures is recommended, but detailed advice on the controls remains for
the future research.


Page 70


Käesoleva doktoritöö eesmärgiks oli välja töötada laiaulatuslik riskianalüüsi
meetod töökeskkonna riskide hindamiseks, sest riskianalüüsi loetakse proaktiivseks
tööohutuse ja töötervishoiu juhtimise aluseks ettevõtetes ning on ühtlasi oluline osa
Euroopa tööohutuse ja töötervishoiualasest seadusandlusest. Valik olemasolevaid
riskianalüüsi meetodeid vaadeldi kirjanduse ülevaates. Enne uue meetodi
väljatöötamist sätestati meetodile põhitingimused ja spetsiifilised kriteeriumid, mis
hõlmasid kasutaja sõbralikkust, selget vastuvõetava ja vastuvõetamatu riskitaseme
eristamist, sobivust erineva ohtude diapasooniga ettevõtetele jne.

Doktoritöö esitab paindliku riskianalüüsi meetodi, mis põhineb kaheastmelisel
mudelil, mida on võimalik laiendada kuni kuueastmeliseks sõltuvalt ettevõtte
suurusest, ohtude profiilist ja ohutusalaste spetsialistide kogemuslikust baasist.
Kriteeriumid riskitasemete määramiseks peamistele ohuteguritele Eesti tööstuses –
ebasobiv sisekliima, vääriti organiseeritud valgustus, ülemäärane müra, kemikaalid
ja tolm – töötati välja, kasutades paindliku riskianalüüsi viieastmelist skeemi.
Töökeskkonna ohutegureid mõõdeti 18 erinevas ettevõttes, mille tulemusi
analüüsiti, esitades riskitasemete suuruse. Ülemäärast müra kui üht tõsisemat
töökeskkonnaalast probleemi tööstuses uuriti süvitsi ning hinnati riski mürast
tingitud kuulmiskahjustuse arenemiseks. Puidutööstuses uuriti nelja erineva
neurotoksilise kemikaali (butanool, stüreen, ksüleen ja tolueen) sisaldust töökeskkonna
õhus ning esitati riskitasemete kriteeriumid. Töökeskkonnas esinevatest
tolmudest uuriti puidutolmu.

Töösse on lisatud kaks ohutusalast juhtumiuuringut ettevõtetes, kus kasutati
riskide hindamiseks paindlikku riskianalüüsi meetodit. Uuringud näitasid, et
väljatöötatud meetod on rakendatav hindamaks füüsikalisi ja keemilisi riske.
Proovikasutajad hindasid tarkvara test-versiooni kui kasutajasõbralikku ja
läbipaistvat ning rõhutasid illustratiivsete omaduste olulisust töökeskkonnas
esinevatest ohuteguritest ülevaate saamisel. Meetodit on võimalik kasutada
erinevates ettevõtetes, kuid väikesed ja keskmised ettevõtted on eelistatud, sest
suured ettevõtted, kelle vajadused ja võimalused on laiemad, võivad teha valiku
aeganõudvama ning keerulisema meetodi kasuks.

Käesolevas doktoritöös on uuritud vaid mõõdetavaid ohutegureid. Samasse
mudelisse on püütud integreerida ka teisi ohutegureid (psühhosotsiaalsed,
füsioloogilised), kuid see vajab edasist uurimist ning ei ole antud töös esitatud.
Praegusel kujul identifitseerib meetod ohuteguri riskitaseme, kuid ei esita otsest
soovitust ohutusmeetmete valikul. Pakutakse küll üldist ohutusmeetmete hierarhiat,
kuid üksikasjalike kontrollmeetmete esitamine võiks olla edasine uuring.


© 2009 All Rights Reserved.