# Void Fraction Measurement and Analysis at Normal Gravity and Microgravity Conditions

This study is focused on the measurement and analysis of the volumetric void fraction in water-air, two-phase flow at Î¼-g and 1-g. The water used for the tests was either de-ionized and distilled, or filtered through activated carbon and distilled. The volumetric void fraction can be found from the ratio of the volume occupied by the gas to the total volume of the gas and liquid. Two capacitance void fraction sensors were used. In the early stages of void fraction measurement, a helical-wound-electrode void fraction sensor was designed and tested in February 1994. Over the course of this research, some of the problems associated with this sensor were identified and a new concave-plate-electrode capacitance sensor was developed having a linear response over the flow settings and 10 times the sensitivity of the helical wound sensor. Data was collected covering a wide range of void fraction, from approximately 0.1 to 0.9 at both 1-g and Î¼-g conditions. The flow regimes encountered included bubble, slug, transitional flow, and annular flow.

Void fraction values for slug flow appear to be slightly higher at Î¼-g. The average void fraction values for the remaining flow regimes do not appear to show any discernible difference. The development of the void fraction and flow profiles conducted by Zuber and Findlay (1965), was used to compare the profiles found at 1-g and Î¼-g. These results indicate that the void fraction profile is slightly flatter at 1-g for slug flow. Using this model, the results for bubble flow at 1-g agree with the results reported by other researchers where the well known "saddle" shape profile was found. A statistical approach was used by plotting probability density functions for the 1-g and Î¼-g void fraction data. A wider fluctuation in void fraction was found for bubble and slug flows at 1-g compared to Î¼-g. The probability density functions for the highly inertia dominant transition flow and annular flow regimes at 1-g and Î¼-g were comparable.

Advisor:Jeffrey, K. D.; Bolton, R. J.; Krause, Arnold Edwin; Wilson, J. N.; Rezkallah, Kamiel S.; Bugg, James D.

School:University of Saskatchewan

School Location:Canada - Saskatchewan

Source Type:Master's Thesis

Keywords:none

ISBN:

Date of Publication:05/13/2009