Details

Vanadiumdotierte Metalloxide und -oxofluoride als Katalysatoren in selektiven Oxidationsreaktionen

by

Abstract (Summary)
In this thesis, vanadium containing metal oxides and oxyfluorides were prepared, thoroughly characterised and tested as catalysts in selective oxidation reactions. Bulk and surface properties of all samples were studied by means of CHN-analysis, ICP-OES, XRD, Raman-, FTIR-, MAS-NMR- und ESR-spectroscopy, Py-PAS, TPD and BET-adsorption. Moreover, the oxygen isotope exchange behaviour and the methanol adsorption properties of selected samples were analysed in order to correlate the surface properties with the catalytic behaviour of the materials. Irrespective of the preparation technique applied, the properties of the solids strongly depend on the host lattice as well as on the vanadium content. It has been clearly revealed that a high oxygen exchange activity and the presence of Brønsted acid sites on the catalyst surface promote the activation of the educts in selective oxidation reactions. The enhanced activity, however, is generally accompanied by a low selectivity towards the desired products propylene and formaldehyde, respectively. The low selectivity is caused by the high concentration of catalytically active sites leading to the formation of carbon oxides as total oxidation products of propane and methanol. A very promising catalytic behaviour was observed with vanadium-doped aluminium oxyfluorides. The oxyfluorides were prepared by a new method and contain almost exclusively Lewis-acid sites. The matrix is mainly determined by the fluoride anions resulting in a reduced oxygen mobility and exchange activity. Hence, the vanadium-doped aluminium oxyfluorides exhibit a relatively high catalytic activity accompanied by an excellent selectivity in the oxidation reaction of propane and methanol.
Bibliographical Information:

Advisor:

School:Oberlin College

School Location:USA - Ohio

Source Type:Master's Thesis

Keywords:

ISBN:

Date of Publication:

© 2009 OpenThesis.org. All Rights Reserved.