Details

Use of SPECT Difference Imaging to Assess Subcortical Blood Flow Changes During Epileptic Seizures

by Norden, Andrew D.

Abstract (Summary)
Seizures are thought to arise primarily from the cerebral cortex. However, the propagation and behavioral manifestations of seizures involve a network of both cortical and subcortical structures. The medial thalamus and upper brainstem reticular formation are crucial areas for the maintenance of normal consciousness. Bilateral involvement of these structures may be responsible for loss of consciousness during partial seizures. Therefore, we sought to investigate the role of the medial thalamus and brainstem in seizures. We performed SPECT ictal-interictal difference imaging co-registered with high-resolution MRI scans to localize regions of cerebral blood flow changes in patients undergoing inpatient monitoring for epilepsy. Ictal-interictal SPECT scans from 43 seizures in 40 patients were analyzed. The medial thalami showed SPECT difference imaging changes of >20% in 18 patients. Of patients with medial thalamic changes, the majority (13 of 18) had seizure onset in the temporal lobe, while only 1 had confirmed onset in extratemporal structures, and the remainder were non-localized. In contrast, in the 22 patients without >20% SPECT changes in the medial thalami, 6 had extratemporal onset, 6 had temporal onset, and the remainder were non-localized. In patients with temporal lobe seizures, the side of greater medial thalamic and brainstem reticular formation involvement was strongly related to SPECT injection timing such that there was a sequential pattern of ipsilateral followed by contralateral changes. Brainstem structures showed >20% SPECT changes in 27 of 43 seizures with no clear relation to temporal or extratemporal onset. We conclude that the medial thalamus is preferentially involved in seizures arising from the temporal lobes, possibly reflecting the strong connections between limbic temporal structures and the medial thalamus. Sequential involvement of ipsilateral followed by contralateral structures in the medial thalamus and upper brainstem may explain how seizures produce peri-ictal loss of consciousness despite incomplete involvement of the cerebral cortex.
Bibliographical Information:

Advisor:Hal Blumenfeld

School:Yale University

School Location:USA - Connecticut

Source Type:Master's Thesis

Keywords:electromyography cerebellar hyperperfusion single photon emission computed tomography

ISBN:

Date of Publication:02/11/2003

© 2009 OpenThesis.org. All Rights Reserved.