Topographical micro-changes in corrugated board production : effects on flexographic post-print quality

by Rehberger, Marcus

Abstract (Summary)
The appearance and design of a package are key properties to attract and to focus the attention of a customer. Print quality contributes to a great degree to achieve these requirements. Most critical perceived in terms of quality are print defects like mottling, gloss and stripiness, which all appear in the printing of corrugated board. Stripiness is especially critical because it is a defect directly caused by the corrugated board construction. A further cause can be generated by the production process of corrugated board. Pre-studies by Odeberg Glasenapp (2004) revealed a difference in surface micro-roughness between the regions on the peak line of the liner and the regions in the valley between two peaks of the corrugation. This knowledge was the basis for the work described in this thesis.In a first stage, laboratory trials were conducted with sets of coated and uncoated samples of various grammages. The trial was set-up in order to simulate the conditions in the corrugator as closely as possible. In the evaluations, it was found out that the settings were too high. For that reason, the coated samples were influenced to a too high degree and needed to be excluded from further evaluations. With the uncoated samples, on the other hand, a change in micro surface roughness was detectable. The roughness is decreased on the peaks and the gloss appearance was the conclusion. The analysis of the printed samples focused on shifts in colour and print density. It is unclear if both are affected only surface roughness changes and/or by the typical corrugated board effect of washboarding.A full-scale test was performed in order to confirm the results of the laboratory test. A test series was chosen with coated and uncoated outer liners. Contrary to the lab-test results, the uncoated grades showed no surface roughness changes. Instead, the coated samples were affected to a great extent. The changes in surface roughness and gloss appearance were similar to the lab-test. This confirms that the lab-test samples were exposed to heat, pressure and shear to a too high degree. The print analysis of the full-scale test did not agree with the laboratory test. Gloss lines were visually detectable, but they were difficult to measure. A reason could be that the ink is capable on forming an ink film layer on top of the surface of the paper. This would cover the micro roughness of the matt parts thereby creating an almost homogeneous glossy appearance.
Bibliographical Information:


School:Kungliga Tekniska högskolan

School Location:Sweden

Source Type:Master's Thesis

Keywords:TECHNOLOGY; Chemical engineering; Chemical process and manufacturing engineering; Cellulose and paper engineering; corrugated board; liner; double-facer; double-backer; gloss; surface roughness; micro structure; wear; paper metal friction; flexo; ink-jet; print quality


Date of Publication:01/01/2007

© 2009 All Rights Reserved.