Swift Electro-Optic Modulator Swift Electro-Optic Modulator

by Harston, Geofrey Craig

Abstract (Summary)

The Silicon Wafer Integrated Fiber Technology, SWIFT, is a novel platform for the development of photonic devices. SWIFT is comprised of an optical fiber, specifically a D-fiber in this work, embedded into a V-groove etched into a silicon wafer. This provides a method to secure the fiber and allows the use of standard semiconductor industry equipment and techniques in latter processing for device fabrication.

The SWIFT platform is used as the basis for the development of a polarimetric in-fiber electro-optic modulator. The modulator is based on the application of a nonlinear optical polymer, NLOP, film into the evanescent field of a D-fiber. In this way electric fields applied to the NLOP can be used to influence the light propagating through the fiber. The two initial processes in fabricating the modulator are accessing the evanescent field of the D-fiber and making a nonlinear optical polymer (NLOP) thin film.

To expose the evanescent field the fiber is chemically etched using hydrofluoric acid. During the etching, light transmitted through the fiber is monitored for changes in power and polarization. The measured optical changes are correlated to scanning electron microscope images of the etched fibers to relate the etch depth to the changes in power and polarization. This provides an etching process that is controllable and repeatable.

The NLOP films are made from a simple guest-host system based poly(methyl methacrylate) (PMMA) and dispersed red 1 azo dye (DR1), a nonlinear optical dye. The films are poled to align the dye molecules so that the polymer will exhibit nonlinear optical properties. The poled polymers are tested for second harmonic generation, SHG, to insure that they are nonlinearly optically active.

Utilizing the SWIFT platform and the monitored etching process, fibers were etched to a desired 0.2 microns from the core on a repeatable basis. A nonlinear optical polymer was synthesized, formed into thin films, and poled. Nonlinear optical activity in the films was verified by SHG testing.

Bibliographical Information:


School:Brigham Young University

School Location:USA - Utah

Source Type:Master's Thesis

Keywords:electo optic modulator polarimetric optical packaging nonlinear polymer swift


Date of Publication:10/23/2003

© 2009 All Rights Reserved.