Strukturen von eEF3 und Sec61 als aktive ribosomale Liganden

by Becker, Thomas

Abstract (Summary)
This work presents cryo-EM structures of two active ribosomal ligands in yeast, namely eEF3 and Sec61. Protein synthesis requires two canonical elongation factors in all kingdoms. These are the GTPases eEF1A (EF-Tu in prokaryotes) and eEF2 (EF-G in prokayotes). In fungi, a third elongation factor eEF3 is required, which belongs to the ATP-binding cassette- (ABC-) protein family. This factor is essential for the binding of the aminoacyl-tRNA-eEF1A-GTP ternary complex to the A site of the ribosome and has been suggested to do so by facilitating the clearance of deacyl-tRNA from the ribosomal E-site. The cryo-EM structure of the ATP-bound form of eEF3 in complex with an 80S ribosome shows that eEF3 binds the ribosome in the post-translocational conformation using a novel binding site. From there the affinity for tRNA in the ribosomal E site could be easily modified. Using the crystal structure of eEF3, a molecular model for eEF3 was generated, which provides the structural basis for the activity of an ABC protein in the context of translation. In co-translational translocation the trimeric Sec61-complex serves as a signal sequence-gated protein-conducting channel (PCC) which allows the translocation of a secetory protein through and the integration of a membrane protein into the lipid bilayer of the ER. Bound to a ribosome, the active PCC seems to have an oligomeric structure consisting of several copies of Sec61-trimers. The crystal structure of an inactive PCC, however, shows only a single heterotrimer (monomer) which could also be functional in the active state. The cryo-EM structure of the active PCC in complex with a translating ribosome shows the hitherto most detailed electron density map for the PCC. The most characteristic feature is a funnel-shaped off-centered pore at the cytosolic side. Several models for the active state were docked into the EM-density. Although a precise molecular interpretation is limited by the resolution (12, 3 Å), a single copy of an opened Sec61-heterotrimer seems to be the most reasonable fit for the density.
This document abstract is also available in German.
Document Full Text
The full text for this document is available in German.
Bibliographical Information:


School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:cryo-electron microscopy Elongation ribosome elongation cotranlational translocation WE 5220


Date of Publication:01/30/2007

© 2009 All Rights Reserved.