Details

Structural properties of scale-free networks

by Xulvi-Brunet, Ramon

Abstract (Summary)
Netzwerke sind überall, von der elektrischen Stromversorgung über die Biochemie der Zellen, das Internet bis hin zu sozialen Netzen. Netzwerke als mathematisches Konzept haben sich in den letzten Jahren zu einem wichtigen Werkzeug der Beschreibung komplexer Systeme entwickelt. Ihre grundlegende Eigenschaft ist, dass sie aus einer grö{ss}en Anzahl dynamischer Elemente bestehen, die sich gegenseitig beeinflussen und dabei nicht linear gekoppelt sind. Die moderne Netzwerkwissenschaft will die Wechselwirkung zwischen den einzelnen Untereinheiten erklären und davon ausgehend verständlich machen, auf welche Weise Prozesse auf einem Netzwerk stattfinden können. Zum Beispiel wird untersucht, wie die Struktur sozialer Netze die Ausbreitung von Information oder von Krankheiten beeinflusst, wie die Topologie des World Wide Web das Surf-Verhalten oder die Funktionalität von Suchmaschinen beeinträchtigt oder welche Auswirkungen die Hierarchie in ökologischen Nischen auf die Populationsdynamik der einzelnen Spezies hat. Darüber hinaus gilt es herauszufinden, welche grundlegenden Prinzipien der Evolution realer Netzwerke zugrunde liegen, das heißt nach welchen Regeln sich einerseits die Untereinheiten entwickeln und welchen Einfluss andererseits deren Vernetzung hat. Die vorliegende Dissertation beschäftigt sich sowohl mit der Topologie verschiedener Netzwerke als auch mit den der Evolution zugrunde liegenden Prinzipien. Schwerpunkte liegen dabei auf den folgenden zwei Aspekten: erstens dem Einfluss von so gennanten ``vertex-pair correlations'''', das heißt Korrelationen zwischen den Untereinheiten, auf die Topologie und zweitens der Auswirkung der Geographie auf die Netzwerkentwicklung. Es wird der bedeutende Einfluss aufgezeigt, den die Korrelationen auf wichtige statistische Größen der Netzwerke haben. Weiterhin analysieren wir die Perkolationseigenschaften, die Aufschluss über die Empfindlichkeit gegenüber Störungen in der Vernetzung geben. Damit können zum Beispiel Fragen aus der Epidemiologie diskutiert werden. Es zeigt sich, dass die Topologie vieler Netzwerke und ihre Perkolationseigenschaften deutlich von Korrelationen beeinflusst werden. Schließlich untersuchen wir im letzten Teil dieser Arbeit, wie die Einbettung von Netzwerken in eine endlich-dimensionale Geographie auf die Modellierung und Entwicklung Web-ähnlicher Systeme Einfluss nimmt.
This document abstract is also available in English.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Physik, Astronomie Physik Netzwerke Graphentheorie komplexe Systeme

ISBN:

Date of Publication:03/09/2007

© 2009 OpenThesis.org. All Rights Reserved.