Details

Structural Studies of Microbial Proteins - From Escherichia coli and Herpesviruses

by Gurmu, Daniel, PhD

Abstract (Summary)
Structure biology concerns the study of the molecular structures of biological macromolecules, such as proteins, and how these relate to the function. Protein structures are also of importance in structure-based drug design. In this thesis, the work has been carried out in two different projects. The first project concerns structural studies of proteins from the bacterium Escherichia coli and the second of proteins from five different herpesviruses. The E. coli project resulted in the structural characterization of three proteins: CaiB, RibD, and YhaK. CaiB is a type-III CoA transferase involved in the metabolism of carnitine. Its molecular structure revealed a spectacular fold where two monomers were interlaced forming an interlocked dimer. RibD, a bi-functional enzyme, catalyzes two consecutive reactions during riboflavin biosynthesis. In an attempt to characterize the mechanism of action of the N-terminal reductase domain, the structure of RibD was also determined in two binary complexes with the oxidized cofactor, NADP+, and with the substrate analogue ribose-5-phosphate. YhaK is a protein of unknown function normally found in low abundance in the cytosol of E. coli and was previously annotated to be a member of the Pirin family. However, some structural features seem to distinguish YhaK from these other Pirin proteins and we showed that YhaK might be regulated by reactive oxygen species. The Herpesvirus project resulted in the structural determination of two proteins, the SOX protein and ORF60 from Kaposi’s sarcoma associated herpesvirus (KSHV). SOX, a bi-functional shutoff and exonuclease protein, is involved in the maturation and packaging of the viral genome into the viral capsid and in the host shutoff of cellular proteins at the mRNA level. The SOX structure was also used for modeling DNA binding. The crystallization and preliminary structural studies of ORF60, the small R2 subunit of the ribonucleotide reductase (RNR) from KSHV is also discussed.
Bibliographical Information:

Advisor:

School:Stockholms universitet

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:MEDICINE; Chemistry; Biochemistry; CaiB; RibD; YhaK; SOX; ORF60; Herpesvirus; E. coli; biokemi; Biochemistry

ISBN:978-91-7155-995-1

Date of Publication:01/01/2010

© 2009 OpenThesis.org. All Rights Reserved.