Details

Signaling pathways regulating the transcriptional response of the sodium ATPase ENA1 to saline and alkaline stress in the yeast Saccharomyces cerevisiae

by Platara, Maria

Abstract (Summary)
La respuesta de adaptación de la levadura Saccharomyces cerevisiae a la alcalinización ambiental provoca una remodelación de su expresión génica. Una diana clave es el gen ENA1 que codifica una ATPasa de sodio, y cuya inducción por pH alcalino está mediada por las vías de calcineurina y el Rim101. En un estudio previo se identificaron dos regiones del promotor de ENA1 responsables de su respuesta al álcali, la ARR1 (Alkaline Responsive Region 1) que es calcineurina-dependiente y ARR2 que es calcineurina-independiente. En este trabajo restringimos la región responsable de la respuesta alcalina de ARR2 a un pequeño fragmento de 42 nucleótidos que denominamos MCIR (por Minimum Calcineurin Independent Response). MCIR contiene un elemento MIG, capaz de unir a los represores Mig1 y Mig2. Observamos que la respuesta a pH alcalino de la MCIR se anula en células que carecen de Snf1, la quinasa que regula la actividad represora de Mig1 en función de la disponibilidad de glucosa. En cambio, su respuesta se ve moderadamente reducida en cepas rim101, mientras que el doble mutante mig1 mig2 presenta altos niveles de expresión a pH alcalino. Además, la deleción de NRG1 resulta en una expresión elevada y la inducción de MCIR es marginal en el cuádruple mutante nrg1,2 mig1,2. También demostramos que Nrg1 se une al extremo 5' de la ARR2 in vitro e in vivo. Por lo tanto, la respuesta de ENA1 que es calcineurina independiente esta regulada por Rim101 (a través de Nrg1) y por Snf1 (a través de Nrg1 y Mig2). De esta manera, la inducción del promotor de ENA1 por pH alcalino en un mutante rim101snf1 en presencia del inhibidor químico de la calcineurina FK506 se anula totalmente. Por lo tanto, la respuesta transcripcional de ENA1 a estrés alcalino, integra tres vías de señalización, cuya importancia relativa es Snf1 > calcineurina > Rim101. La CK2 es una quinasa que está conservada en eucariotas y participa en diversos procesos celulares. En S. cerevisiae cepas que carecen de las subunidades reguladoras Ckb1 y/o Ckb2 de la CK2 son muy sensibles a cationes de litio y de sodio. En este estudio confirmamos observaciones anteriores que describían que la respuesta de ENA1 a estrés salino y alcalino está disminuida en células que carecen de Ckb1 y/o Ckb2. Además demostramos que los mutantes ckb son sensibles a pH alcalino. Las tres vías de señalización (Rim101, calcineurina, Snf1) responsables de la regulación de ENA1 en condiciones de estrés alcalino se examinaron para posibles interacciones con la CK2. Nuestros resultados sugieren que CK2 y calcineurina regulan la expresión de ENA1 de manera independiente. Además, mostramos que la deleción de RIM101 resulta en inducción de la expresión de ENA1, disminuida en condiciones de estrés salino, y que la deleción simultanea de CKB agrava solo ligeramente el defecto de las cepas rim101 en la expresión salina y alcalina de ENA1. Deleción del factor de transcripción Nrg1 en un fondo genético ckb resulta en niveles de expresión de ENA1 relativamente altos en condiciones de estrés salino y alcalino. Estos resultados, junto con datos anteriores que muestran que Nrg1 se fosforila por CK2 en estas condiciones de estrés, son compatibles con una supuesta interacción entre CK2 y la vía Rim101. Cabe destacar que la deleción de CKB repara el defecto que presentan las células snf1 en la expresión de ENA1 bajo estrés salino y alcalino y que los mutantes ckb1,2 snf1 presentan un crecimiento en litio mayor que la cepa salvaje, sugiriendo la existencia de una interacción compleja entre CK2 y Snf1.
This document abstract is also available in English.
Bibliographical Information:

Advisor:Ariño Carmona, Joaquín

School:Universitat Autónoma de Barcelona

School Location:Spain

Source Type:Master's Thesis

Keywords:406 departament de bioquimica i biologia molecular

ISBN:

Date of Publication:06/16/2008

© 2009 OpenThesis.org. All Rights Reserved.