Signal derived from photosynthic electron transport regulates the expression of methionine sulfoxide reductase (Msr) gene in the green macroalga Ulva fasciata Delile

by Hsu, Yuan-ting

Abstract (Summary)
This study has investigated the involvement of photosynthetic electron transport chain on the regulation of gene expression of methionine sulfoxide reductase (UfMSR) in the marine macroalga Ulva fasciata Delile.UfMSRA is from copper stress and UfMSRB ir from hypersalinity stress. UfMSRA is similar to Arabidopsis AtMSRA4 and UfMSRB is similar to AtMSRB1. UfMSRA is specific to the MetSO S-enantiomer and UfMSRB catalytically reduces the MetSO R-enantiomer. Both enzymes are required, since in the cell oxidation of Met residues at the sulfur atom results in a racemic mixture of the two stereoisomers. UfMSRA and UfMSRB transcripts were increased by white light, blue light and red light with the maximum at 1 h following a decline, but kept constant in the dark. The magnitude of UfMSRA and UfMSRB transcript increase showed a positive linear correlation to increasing light intensity from 0-1200 u mole¡Pm-2¡Ps-1. The treatment with linear electron transport chain inhibitors, hydroxylamine, 3-(3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and stigmatellin, effectively inhibited PS II activity under 300 u mole¡Pm-2¡Ps-1 irradiance. DBMIB and stigmatellin can increase UfMSRA transcript that was reversed by 2,6-dichlorophenolindophenol (DCPIP), a PS I electron donor. It indicates that the block of electron transport of the downstream of cytochrome b6f indeuces UfMSRA gene expression. Hydroxylamine, DCMU and DBMIB decreased UfMSRB transcript that was not reversed by DCPIP while stigmatellin increased UfMSRB mRNA level, reflecting a role of reduced state with Qo site located at cytochrome b6f on the induction of UfMSRB gene expression. The cyclic electron transport chain inhibitors, antimycin A that inhibited photosynthetic electron transport, can inhibit the increase of UfMSRA and UfMSRB transcripts by irradiance. UfMSRA and UfMSRB gene expression were both modulated by cyclic electron transport chain and linear electron transport chain. These results reveal that photosynthetic electron transport chain modulates UfMSRA and UfMSRB gene expression by change its redox state.
Bibliographical Information:

Advisor:Zin-Huang Liu; Tse-Min Lee; Hsien-Jung Chen

School:National Sun Yat-Sen University

School Location:China - Taiwan

Source Type:Master's Thesis

Keywords:dcmu ulva fasciata methionine sulfoxide reductase electron transport chain antimycin a hydroxylamine light stigmatellin sham dcpip dbmib


Date of Publication:11/20/2008

© 2009 All Rights Reserved.