Details

Ru(II) under illumination : A study of charge and energy transfer elementary processes / Les complexes de Ru(II) sous illumination: Etude des processus élémentaires de transferts de charges et d’énergie

by Herman, Leslie C.V.

Abstract (Summary)
Une compréhension sans cesse plus pointue des processus élémentaires de transferts de charges et d’énergie, qui sont à la base même de nombreux processus biologiques, permet non seulement l’élaboration mais aussi l’amélioration de la mise au point de molécules photoactives utiles dans différentes applications. C'est le cas (i) de systèmes moléculaires et supramoléculaires destinés à mimer efficacement la photosynthèse, ou encore (ii) de molécules photoactives capables d’interagir avec des macromolécules biologiques et d’induire une transformation de ces biomolécules. C’est dans ce cadre général que s’inscrit l’élaboration de nouveaux complexes polyazaaromatiques de Ru(II) capables d’interagir avec la double hélice d’ADN et de photoréagir avec sa base la plus réductrice, la guanine, par transfert d’électron photoinduit. C’est sur la base de ces processus que des nouveaux agents antitumoraux photoactivables ont pu être développés. L’utilisation de complexes de Ru(II) dans le design d’entités supramoléculaires polymétalliques destinées à jouer le rôle de collecteurs de lumière et permettant ainsi de mimer les systèmes d’antennes naturels s’intègre également dans cette démarche. L’ensemble de notre travail s’est concentré sur ces deux domaines d’applications. Par l’étude de différents processus de transfert de charges/d’énergie au sein des complexes seuls (processus intramoléculaires) ou en interaction avec un environnement spécifique (processus intermoléculaires), nous avons souhaité mettre en évidence l’intérêt de l’utilisation d’un nouveau ligand plan étendu, le tpac, au sein de complexes du Ru(II). Un tel ligand permet en effet de conférer d’une part une affinité élevée des complexes résultants pour l’ADN, et d’autre part, de par sa nature pontante, de connecter des unités métalliques entre elles au sein d’entités supramoléculaires de taille importante. Les propriétés photophysiques de quatre complexes basés sur le ligand plan étendu tpac, le [Ru(phen)2tpac]2+ (P) et son homologue dinucléaire le [(phen)2Ru tpac Ru(phen)2]4+ (PP) (à base de ligands ancillaires phen), ainsi que le [Ru(tap)2tpac]2+ (T) et son homologue dinucléaire le [(tap)2Ru tpac Ru(tap)2]4+ (TT) (à base de ligands ancillaires tap), ont été étudiées et comparées entre elles. L’examen de ces propriétés, d’abord pour les complexes seuls en solution, en parallèle avec celles de complexes dinucléaires contenant un ligand pontant PHEHAT, a permis de mettre en évidence l’importance de la nature du ligand pontant utilisé. Ces résultats ont ainsi révélé qu’un choix judicieux du ligand pontant permet de construire des entités de grande taille capables de transférer l’énergie lumineuse vers un centre (cas du ligand PHEHAT), ou, au contraire, de relier entre elles des entités ne s’influençant pas l’une l’autre d’un point de vue photophysique (cas du ligand tpac). Les propriétés des complexes du tpac, étudiés cette fois en présence de matériel génétique (mononucléotide GMP, ADN ou polynucléotides synthétiques), se sont révélées très différentes selon que le complexe portait des ligands ancillaires phen (P, PP) ou tap (T, TT). Seuls les complexes à base de tap sont en effet photoréactifs envers les résidus guanine. Nous avons dès lors focalisé cette partie de notre travail sur les deux complexes T et TT. Cette photoréaction, ainsi que le transfert d’électron photoinduit entre ces complexes excités et la guanine, ont pu être mis en évidence par différentes techniques de spectroscopie d’émission tant stationnaire que résolue dans le temps, ainsi que par des mesures d’absorption transitoire dans des échelles de temps de la nano à la femto/picoseconde. L’étude du comportement photophysique des complexes en fonction du pH a en outre révélé de manière très intéressante que, pour des études en présence d’ADN, la protonation des états excités des complexes devait être considérée. Les résultats de cette étude nous ont fourni des pistes quant à l’attribution des processus observés en absorption transitoire. Le transfert d’électron a également fait l’objet d’une étude par des méthodes théoriques. Ces calculs ab initio ont permis de mettre en évidence une faible influence de l’énergie de réorganisation sur la vitesse de transfert d’électron, qui semble dépendre plus sensiblement de la non-adiabaticité du processus, mais surtout de l’énergie libre de la réaction et d’un éventuel couplage à un transfert de proton. L’ensemble des résultats obtenus avec les complexes T et TT en présence de matériel génétique, qui, de manière assez inattendue, sont très semblables, indiquent que ces complexes présentent tous deux un grand intérêt pour le développement de nouvelles drogues antitumorales photoactivables.
Bibliographical Information:

Advisor:Vaeck Nathalie; Kirsch Andrée; Vander Auwera Jean; Moucheron Cécile; Kelly M. John; Gerbaux Pascal

School:Université libre de Bruxelles

School Location:Belgium

Source Type:Master's Thesis

Keywords:photoactivable drug dna energy transfer ruthenium complex electron

ISBN:

Date of Publication:12/11/2008

© 2009 OpenThesis.org. All Rights Reserved.