Role of undecaprenyl phosphokinase in mycobacteria

by Röse, Lars

Abstract (Summary)
The family of mycobacteria is composed of pathogenic and apathogenic bacteria. This study was performed with 3 members of this family, the most prominent pathogenic member, Mycobacterium tuberculosis, the causative agent of tuberculosis, the vaccine strain Mycobacterium bovis BCG which was developed by attenuation of the bovine tuberculosis agent Mycobacterium bovis, and Mycobacterium smegmatis which is apathogenic and widely distributed in soil. A key to understanding mycobacteria and, especially, their resistance is to understand the complexity of their cell wall. Peptidoglycan is a major component of the cell wall and the transport of peptidoglycan precursors out of the cytoplasm to the bacterial surface by undecaprenyl monophosphate is central to cell wall synthesis. Therefore, deletion mutants of the undecaprenyl phosphokinase gene (upk) were generated in M. tuberculosis, M. bovis BCG, and M. smegmatis. In the case of M. smegmatis it was shown that a delta upk deletion mutant, as with deletion mutants of homologous genes in other bacteria, exhibited an increased sensitivity to the antibiotic bacitracin, indicating that cell wall synthesis was hampered. Surprisingly, M. tuberculosis delta upk did not exhibit this phenotype. Furthermore, a lower level of peptidoglycan was detected on the cell surface of an M. smegmatis delta upk mutant compared to M. smegmatis wildtype. Relevance of the undecaprenyl phosphokinase was demonstrated by impaired biofilm development in the case of the M. smegmatis delta upk mutant. This was observed in vitro as well as in vivo using an animal model which was newly developed in this thesis. A fatty acid synthase II (FASII) system related operon revealed by comparative proteome- and transcriptome-analyses comparing M. tuberculosis wildtype and M. tuberculosis delta upk mutant, and may reflect a compensatory mechanism for the loss of upk. Reduced persistence of M. smegmatis in infected macrophages suggested a decisive role of Upk in mycobacterial infection concerning survival and virulence of bacteria. This was later demonstrated to be true for M. tuberculosis in a mouse model. M. tuberculosis delta upk was, therefore, classified as a new member of the group of growth in vivo (giv) mutants. Construction of deletion mutants is a strategy to identify improved vaccines. Ideally, the physiologic consequences of a gene deletion would result in attenuation of the modified bacterium (especially in the case of M. tuberculosis) and overexpression of antigens relevant for protection. Compared to the existing vaccine M. bovis BCG, vaccination of mice with M. bovis BCG delta upk exhibited a lower bacterial load upon vaccination as well as an improved long-lasting protection against M. tuberculosis infection.
This document abstract is also available in German.
Document Full Text
The full text for this document is available in German.
Bibliographical Information:


School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:WD 5060 WF 5200 Biofilm Virulenz Mycobacterium tuberculosis smegmatis bovis BCG Undecaprenyl-Phosphokinase biofilm persistence virulence undecaprenyl phosphokinase


Date of Publication:07/12/2004

© 2009 All Rights Reserved.