Robust control for uncertain networked control systems with random delays

by Huang, Dan

Abstract (Summary)
Networked control systems (NCSs) are a type of distributed control systems where sensors, actuators, and controllers are interconnected through a communication network. This system setup has the advantage of low cost, °exibility, and less wiring, but it also inevitably invites some delays and data loss into the design procedure. The focus of this thesis is to address the problem of analysis and design of networked control systems when the communication delays are varying in a random fashion. This random feature of the time delays is typical for commercially used networks, such as a DeviceNet (which is a controller area network (CAN)) and Ethernet network. Models for communication network delays are ¯rst developed, in which Markov processes are used to model these random network-induced delays. Based on such models, we establish novel methodologies for stability analysis, control with disturbance attenuation, and fault estimation for a class of uncertain linear/nonlinear uncertain NCSs with random communication network-induced delays in both sensor-to-controller and controller-to- actuator channels. Data packet dropouts in the communication channels also have been taken into consideration in the modelling and design procedure. The main technique used in this thesis is based on the Lyapunov-Razumikhin method, which results in delay-dependent controllers. We ¯rst consider the design prob- lems for uncertain linear NCSs. In this case, state feedback controllers and dynamic output feedback controllers are designed to satisfy both stability and disturbance at- tenuation requirements for this class of NCSs. Moreover, a robust fault estimator that ensures the fault estimation error is less than a prescribed performance level is designed. We further go on to address the control problems for uncertain nonlinear NCSs. The nonlinear plant is ¯rst described by the T-S fuzzy model. Based on this model, stability analysis, disturbance attenuation, and fault estimation problems are studied for uncer- tain nonlinear NCSs. It should be noted that system uncertainties, disturbances and noises are addressed in both cases. The existence of such controllers and fault estimators are given in terms of the solvability of bilinear matrix inequalities. Iterative algorithms are proposed to change this non-convex problem into quasi-convex optimization problems, which can be solved e®ectively by available mathematical tools. Finally, to demonstrate the e®ectiveness and advantages of the proposed design methodologies in this thesis, numerical examples are given in each designed control systems. The simulation results show that the proposed design methodologies can achieve the prescribed performance requirements.
Bibliographical Information:

Advisor:Prof. Sing Kiong Nguang

School:The University of Auckland / Te Whare Wananga o Tamaki Makaurau

School Location:New Zealand

Source Type:Master's Thesis

Keywords:fields of research 290000 engineering and technology 290900 electrical electronic


Date of Publication:01/01/2008

© 2009 All Rights Reserved.