Ring-opening catalysts for cetane improvement of diesel fuels

by Nylén, Ulf

Abstract (Summary)
The global oil refining industry with its present product distribution essentially shifted towards fuels such as gasoline and diesel will most likely hold the fort for considerable time. However, conditions are changing and refinery survival will very much depend on long-term planning, process and product flexibility and being at the frontiers of refining technology, a technology where catalysts play leading roles. Today oil refiners are faced with the challenge of producing fuels that meet increasingly tight environmental specifications, in particular with respect to maximum sulphur content. At the same time, the average quality of crude oil is becoming poorer with higher amounts of aromatics, heteroatoms (sulphur and nitrogen) and heavy metals. In order to stay competitive, it is of decisive importance for refiners to upgrade dense petroleum fractions of low quality to highly value-added products. A practicable route, for example, is upgrading the catalytic cracking by-product Light Cycle Oil (LCO) into a high-quality diesel-blending component in a two-step catalytic process. In the first step the LCO is hydrotreated over a Pt Pd based acidic catalyst bringing about heteroatom and aromatic reduction and isomerization of C6 to C5 naphthenic structures. In the second step these naphthenic structures are selectively opened over an Ir-based catalyst to improve the cetane value.The present thesis is mainly devoted to the second catalytic step of LCO upgrading and was partly conducted within the framework of the European Union project RESCATS.From the patent literature it is evident that iridium-based catalysts could be good candidates for ring-opening purposes. A literature survey covering ring opening of naphthenic structures made in the beginning of the project (in 2001), showed the need for extending investigations to heavier hydrocarbons, more representative of the diesel fraction than model compounds such as alkylated mono C5 and C6 naphthenic rings frequently employed in previous academic studies.Ring-opening catalysts, mainly Pt-Ir based, were synthesised at KTH by two different techniques: the microemulsion and the incipient wetness techniques. Paper I is a review of the microemulsion technique and its applications in heterogeneous catalysis. Characterization of catalysts was performed employing a multitude of techniques including quantitative TPR, TEM-EDX, XPS, CO FT-IR, NH3-DRIFTS and XRF etc. Catalytic screening at 325 oC and atmospheric pressure with hydrogen and pure indan as model substance was conducted to investigate ring-opening activity in terms of conversion and selectivity to desired cetane-boosting products. This development process is the topic of Papers II-IV. The possible industrial implementation of the best catalyst candidate is demonstrated in Paper V.When designing a catalytic system aimed at refining petroleum, it is crucial to monitor the evolution of the sulphur distribution throughout the different stages of the process so that catalyst properties and reaction parameters may be optimised. The final section of this thesis and Paper VI are devoted to high-resolution sulphur-distribution analysis by means of a sulphur chemiluminescence detector (SCD) following gas chromatographic separation.
Bibliographical Information:


School:Kungliga Tekniska högskolan

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:TECHNOLOGY; Chemical engineering; ring opening (selective); naphthenic structure; indan; light cycle oil (LCO); cetane; Pt-Ir catalyst; microemulsion; XPS; TPR; TEM; DRIFTS; sulphur analysis; GC-SCD


Date of Publication:01/01/2005

© 2009 All Rights Reserved.