Return from the ant synthetic ecosystems for manufacturing control

by Brückner, Sven

Abstract (Summary)
The synthetic ecosystems approach attempts to adopt basic principles of natural ecosystems in the design of multiagent systems. Natural agent systems like insect colonies are fascinating in that they are robust, flexible, and adaptive. Made up of millions of very simple entities, these systems express a highly complex and coordinated global behavior. There are several branches in different sciences, for instance in biology, physics, economics, or in computer science, that focus on distributed systems of locally interacting entities. Their research yields a number of commonly observed characteristics. To supply engineered systems with similar characteristics this thesis proposes a set of principles that should be observed when designing synthetic ecosystems. Each principle is systematically stated and motivated, and its consequences for the manufacturing control domain are discussed. Stigmergy has shown its usefulness in the coordination of large crowds of agents in a synthetic ecosystem. Sign-based stigmergy through synthetic pheromones is supported by an extension to runtime environments for software agents called the pheromone infrastructure. In this thesis the operation of the pheromone infrastructure is specified, formally modeled and analyzed, and an implementation is presented. The guided manufacturing control system for flexible flow shops is designed following the proposed principles and it uses the pheromone infrastructure to coordinate its agents. It comprises two subsystems. The control (sub)system, which enables production, is distributed and reactive. The advisory (sub)system observes the operation of the control system and advises the manufacturing execution under global considerations. This thesis specifies the guided manufacturing control system and evaluates its operation in a simple but realistic example adapted from the automotive industry. The applicability of the design principles, the usage of the pheromone infrastructure, and the operation of manufacturing control in abstract state spaces are considered on the basis of the guided manufacturing control system.
This document abstract is also available in German.
Document Full Text
The full text for this document is available in German.
Bibliographical Information:


School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Stigmergie Swarm Intelligence Emergenz Multi-Agent Systems Manufacturing Control Stigmergy Emergence Self-Organization


Date of Publication:06/21/2000

© 2009 All Rights Reserved.