Regulation of cell proliferation and differentiation during Drosophila neurogenesis

by Liu, Te-Hui

Abstract (Summary)
During Drosophila embryogenesis, tight coordination between cell proliferation and terminal differentiation is required to ensure the proper formation of the nervous system. However, little is known regarding the mechanism coordinating cell cycle proliferation and terminal differentiation. The main goal of my research was to analyze the transcriptional regulation of the cyclin-dependent kinase inhibitor (CKI) dacapo (dap) gene expression during Drosophila melanogaster neurogenesis. dap is the only identified G1 CKI in Drosophila and is a homolog of p27kip. I found dap expression to be regulated by a complex array of tissue-specific cis-regulatory elements. prospero (pros), a pan-neural transcription factor, regulates dap expression in the embryonic nervous system. Furthermore, Pros and DmcycE, the Drosophila homolog of cyclin E, function cooperatively in regulating the expression of both dap and the neuronal differentiation marker-Even-skipped (Eve). A second goal of my research was to analyze the role of Pros in the regulation of mitotic activity and differentiation. Evidence is presented that cell cycle regulatory genes are downstream targets of Pros in regulating mitotic activity. In addition, Pros interacts with cell cycle regulatory genes to regulate the expression of neuronal differentiation markers in a lineage specific pattern.
Bibliographical Information:


School:The Ohio State University

School Location:USA - Ohio

Source Type:Master's Thesis

Keywords:cell cycle neurogenesis differentiation prospero dacapo


Date of Publication:01/01/2003

© 2009 All Rights Reserved.