Reduced gravity rankine cycle design and optimization with passive vortex phase separation

by Supak, Kevin Robert

Abstract (Summary)
Liquid-metal Rankine power conversion systems (PCS) coupled with a fission reactor remain an attractive option for space power applications because system specific power and efficiency is very favorable for plant designs of 100 kW(e) or higher. Potential drawbacks to the technology in a reduced gravity environment include two-phase fluid management processes such as liquid-vapor phase separation. The most critical location for phase separation is at the boiler exit where only vapor must be sent to the turbine because blade erosion occurs from high velocity liquid droplets entrained by vapor flow. Previous studies have proposed that rotary separators be used to separate the liquid and vapor from a two phase mixture. However these devices have complex turbo machinery, require kilowatts of power and are untested for high vapor flow conditions. The Interphase Transport Phenomena (ITP) laboratory has developed a low-power, passive microgravity vortex phase separator (MVS) which has already proven to be an essential component of two-phase systems operating in low gravity environments. This thesis presents results from flight experiments where a Rankine cycle was operated in a reduced gravity environment for the first time by utilizing the MVS for liquid and vapor phase separation. The MVS was able to operate under saturated conditions and adjust to system transients as it would in the Rankine cycle by controlling the amount of liquid and vapor within the device. A new model is developed for the MVS to predict separation performance at high vapor flow conditions for sizing the separator at the boiler, condenser, and turbine locations within the cycle by using a volume limiting method. This model factors in the following separator characteristics: mass, pumping power, and available buffer volume for system transients. The study is concluded with overall Rankine efficiency and performance changes due to adding vortex phase separation and a schematic of the Rankine cycle with the integration of the MVS is presented. The results from this thesis indicate the thermal to electric efficiency and specific mass of the cycle can be improved by using the MVS to separate the two phases instead of a rotary separator.
Bibliographical Information:

Advisor:Best, Fred R.; Hassan, Yassin; Ley, Obdulia

School:Texas A&M University

School Location:USA - Texas

Source Type:Master's Thesis

Keywords:microgravity two phase flow rankine cycle design


Date of Publication:12/01/2007

© 2009 All Rights Reserved.