Details

Redox Reactions of NO and O2 in Iron Enzymes : A Density Functional Theory Study

by Blomberg, Mattias

Abstract (Summary)
In the present thesis the density functional B3LYP has been used to study reactions of NO and O2 in redox active enzymes.Reduction of nitric oxide (NO) to nitrous oxide (N2O) is an important part in the bacterial energy conservation (denitrification). The reduction of NO in three different bimetallic active sites leads to the formation of hyponitrous acid anhydride (N2O22-). The stability of this intermediate is crucial for the reaction rate. In the two diiron systems, respiratory and scavenging types of NOR, it is possible to cleave the N-O bond, forming N2O, without any extra protons or electrons. In a heme-copper oxidase, on the other hand, both a proton and an electron are needed to form N2O.In addition to being an intermediate in the denitrification, NO is a toxic agent. Myoglobin in the oxy-form reacts with NO forming nitrate (NO3 -) at a high rate, which should make this enzyme an efficient NO scavenger. Peroxynitrite (ONOO-) is formed as a short-lived intermediate and isomerizes to nitrate through a radical reaction.In the mechanism for pumping protons in cytochrome oxidase, thermodynamics, rather than structural changes, might guide protons to the heme propionate for further translocation.The dioxygenation of arachidonic acid in prostaglandin endoperoxide H synthase forms the bicyclic prostaglandin G2, through a cascade of radical reactions. The mechanism proposed by Hamberg and Samuelsson is energetically feasible.
Bibliographical Information:

Advisor:

School:Stockholms universitet

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:NATURAL SCIENCES; Physics; Atomic and molecular physics; Chemical physics; enzyme catalysis; redox reactions; cytochrome oxidase; nitric oxide reductase; hyponitrous acid anhydride; peroxynitrite; myoglobin; prostaglandin synthase; PGHS; NO; N2O; O2; CO

ISBN:91-7155-208-1

Date of Publication:01/01/2006

© 2009 OpenThesis.org. All Rights Reserved.