Details

Radiative corrections to hadron production in e+e- annihilations at DA(Phi)NE energies

by Hoefer, Axel

Abstract (Summary)
Radiative corrections to low energy hadron production as measured at the e+ e- colliders DAFNE and VEPP-2M are investigated. The goal of this work is to provide the theoretical condition for extracting hadronic cross sections undressed from QED corrections from the measured data with a precision of per mill level. High precision hadronic data are required to reduce the theoretical error of the running fine structure constant alpha(s) and the muon anomalous magnetic moment a(mu) and therefore represent a key to a possible discovery of ``new physics''. Especially the channel of charged pion pair production e+e- -> pi+ pi- below 1 GeV appears to be of great importance. To this process the complete O(alpha) QED initial state, final state and initial-final state interference corrections are calculated. Analytic formulae are given for the virtual and for the real photon corrections. The total cross section sigma, the pion angular distribution dsigma/dcos(theta) and the pi+ pi- invariant mass distribution dsigma/ds' are investigated in the regime of experimentally realistic kinematical cuts. It is shown that in addition to the full O(alpha) corrections also the O(alpha^2) and leading log O(alpha^3) photonic corrections as well as the contributions from IS e+ e- pair production have to be taken into account if at least per cent accuracy is required. For the data analysis I focus on an inclusive treatment of all photons. The theoretical error concerning this treatment of radiative corrections is then estimated to be 2 per mill for both the measurement of the total cross section and the pi+ pi- invariant mass distribution. In addition the model uncertainty due to the pion substructure is discussed. To be able to extract the pion form factor from the experimental data with the desired accuracy a dedicated Fortran program was written which allows to take into account experimentally realistic kinematical cuts. Altogether the precision of the theoretical prediction matches the requirements of low energy e+ e- experiments like the ones at DAFNE and VEPP-2M.
This document abstract is also available in German.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:QED Corrections hadronic cross sections DAFNE physics Standard Model

ISBN:

Date of Publication:03/08/2002

© 2009 OpenThesis.org. All Rights Reserved.