Pulsed laser ablation studied using digital holographic interferometry

by Amer, Eynas

Abstract (Summary)
Pulsed digital holographic interferometry has been used to investigate the plume and the shock wave generated in the ablation process of a Q-switched Nd-YAG (lambda= 1064 nm and pulse duration = 12 ns) laser pulse on a polycrystalline Boron Nitride (PCBN) target under atmospheric air pressure. A special set-up based on using two synchronised wavelengths from the same laser for simultaneous processing and measurement has been used. Digital holograms were recorded for different time delays using collimated laser light (lambda= 532 nm) passed through the volume along the target. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave and the plume generated by the process. Radon inversion has been used to estimate the 3D refractive index fields measured from the projections assuming rotational symmetry. Verification of the point explosion model has been done. The amount of released energy i.e. the part of the incident energy of the laser pulse that is eventually converted to a shock wave has been estimated. Shock wave front densities have been calculated from the reconstructed refractive index fields using the Gladstone-Dale equation. A comparison of the shock front density calculated from the reconstructed data and that calculated using the point explosion model at different time delays has been done. The comparison shows quite good agreement between the model and the experimental data. Finally the reconstructed refractive index field has been used to estimate the electron number density distribution within the laser induced plasma. The results show that pulsed digital holographic interferometry is a promising technique to study laser ablation processes. Different materials and laser parameters like wavelength, focusing, number of pulses can be studied in combinations with other techniques.
Bibliographical Information:


School:Luleå tekniska universitet

School Location:Sweden

Source Type:Master's Thesis



Date of Publication:01/01/2008

© 2009 All Rights Reserved.