by Venkateswaran, Jayendran.

Abstract (Summary)
Today, there is little understanding of how local decisions and disturbances impact the global performance of the supply chain. In this research, we analyze the interactions between the planning decisions of different members of the supply chain, considering the operational aspects at each member and the robustness of the plan, using multi-resolution hybrid models. To this end, a novel hybrid architecture and methodology consisting of simulation (system dynamic and discrete-event) and optimization modules is proposed. The proposed methodology, applicable to general supply chains, is divided into fours stages: plan stability analysis (Stage I), plan optimization (Stages II), schedule optimization (Stage III) and concurrent decision evaluation (Stage IV). Functional and process models of the proposed architecture are specified using formal IDEF tools. A realistic three-echelon conjoined supply chain system characterized by communicative and collaborative (VMI) configurations is analyzed in this research. Comprehensive SD models of each player of the supply chain have been developed. General conditions of the stability (settings of control parameters that produce stable response) are derived using z-transformation techniques (Stage I), and insights into the behavior of the supply chain are gained. Next, a novel method for the integration of the stability analysis with performance analysis (optimization) is presented (Stage II) by employing the derived stability conditions derived as additional constraints within the optimization models. Next, in Stage III, the scheduling at each chain partner using discrete-event simulation (DES) modeling techniques is addressed. In Stage IV, the optimality of the SD control parameters (from Stage II) and DES operational policies (from Stage III) for each 19 member are concurrently evaluated by integrating the SD and DES models. Evaluation in Stage IV is performed to better understand the global consequence of the locally optimal decisions determined at each supply chain member. A generic infrastructure has been developed using High Level Architecture (HLA) to integrate the distributed decision and simulation models. Experiments are conducted to demonstrate the proposed architecture for the analysis of distributed supply chains. The progressions of cost based objective function from Stages I-III are compared with that from the concurrent evaluation in Stage IV. Also the ability of the proposed methodology to capture the effect of dynamic perturbations within the supply chain system is illustrated. 20
Bibliographical Information:


School:The University of Arizona

School Location:USA - Arizona

Source Type:Master's Thesis



Date of Publication:

© 2009 All Rights Reserved.