Polypeptide Conjugates as High-affinity Binders for Proteins

by Tollstoy Tegler, Lotta

Abstract (Summary)

A novel concept for protein recognition has been developed. The recognition unit is a hybrid molecule obtained by conjugation of a small organic molecule to a synthetic polypeptide selected from a 16-membered set of 42 amino acid residue sequences. The sequences are unordered and have no prior relation to the target proteins. The concept is based on the hypothesis that a small set of sequences capable of hydrophobic interactions, hydrogen bonding and electrostatic interactions can yield a binder for any selected protein, provided that the small molecule shows medium affinity or better and is reasonably selective.

The concept has been illustrated by the design, synthesis and evaluation of binders for three different proteins, the C-reactive protein, CRP, human Carbonic anhydrase II, HCAII, and Acetylcholine esterase, AChE. Highly efficient binders for CRP have been developed by conjugation of a derivative of the natural ligand, phosphocholine, to the side chain of one of the amino acids in each polypeptide. The binders in the set show a wide range of affinities for CRP and the tightest binder, 4-C10L17-PC6, binds almost irreversibly. Selected binders have been evaluated in human serum, where they capture CRP with high selectivity.High-affinity binders have been developed for HCAII, and the selectivity evaluated by extraction of the protein from blood. The binder 4-C37L34-B, a polypeptide conjugated to a spacered benzenesulphonamide residue, was able to extract Carbonic anhydrases specifically and to discriminate between the two isoforms of human Carbonic anhydrase. The conjugation of an acridine derivative to a polypeptide via a 14 atom spacer has been shown to yield a binder with high affinity and selectivity for AChE. The selectivity was demonstrated by extraction of AChE from Cerebrospinal fluid.

This thesis focuses on the development of a fast and reliable procedure for the construction, selection and evaluation of protein binders, with the ambition to develop a technology that is applicable to the development of binders for all proteins.

Bibliographical Information:


School:Uppsala universitet

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:NATURAL SCIENCES; Chemistry; Protein recognition; polypeptide conjugates; peptide; molecular interactions; C-reactive protein; Acetylcholine esterase; Human Carboinc anhydrase; organisk kemi; Organic Chemistry


Date of Publication:01/01/2009

© 2009 All Rights Reserved.