Phosphorus runoff potential of different sources of manure applied to fescue pastures in Virginia

by Hollmann, Marcus.

Abstract (Summary)
Version 2.0 of the P Index for Virginia uses coefficients describing the risk of P losses for different manure sources applied to fescue pasture that have not been verified on Virginian soils. In the first experiment, four sources of manure (dairy slurry, piggery waste, beef solids, and poultry litter) and triple superphosphate (TSP) were applied iso-nitrogenously to pasture plots (1.5 m2, 10% slope) with 31 ppm Mehlich 1-P soil test. The P treatments were amended in spring at a rate of 62.7 kg P2O5/ha and compared against a no-P-amended control. Forage was cut and removed monthly (n=5). Five rainfall simulations (65-70 mm/h) were conducted at three occasions (June, August, and October); the soil moisture was below field capacity at two events. Continuous surface runoff was collected for 30 min from each plot in accordance with the protocol of the National P Research Project. Data were statistically analyzed using Proc Mixed of SAS with rain event or cutting used as the repeated measure. Runoff concentrations of total P (TP) and dissolved reactive P (DRP) did not vary by treatment. The control showed less TP (0.126 mg/l) and DRP (0.068 mg/l) concentration than all other treatments (ranges 0.190 to 0.249 mg TP/l and 0.129 to 0.182 mg DRP/l) in runoff during the first event (40 d after treatment). The control had the lowest (0.118 mg/l) and TSP the highest (0.248 mg/l) TP concentration during the second event 24 h later. Samples taken at 5-min intervals during the second simulation showed a significant decrease in TP and DRP concentrations over time for all treatments but the control. Treatments did not affect edge-of-the-field losses of TP, DRP, or TKN. Soil test P and water-extractable P measured after the fifth and final rainfall simulation did not correlate to P concentrations in runoff. Forage yields and their N and P concentrations were not impacted. Results indicated a decreasing impact of manure, spring-applied to fescue pasture, on runoff P concentrations throughout the season. Highest TP concentrations were found during the first pair of simulated rainfalls from the TSP treatment. In a second experiment, indoor runoff boxes were used to simulate management intensive rotational grazing. Commercial fertilizer TSP and manure application increased runoff TP concentration from 0.146 mg/l to 0.245 mg/l and DRP concentration from 0.105 mg/l to 0.183 mg/l. Runoff P did not differ between organic or inorganic P treatments, possibly due to the small area of the boxes. However, application of manure increased runoff TKN overall, with a linear decrease as the time increased between application and rain simulation.
Bibliographical Information:


School:Virginia Polytechnic Institute and State University

School Location:USA - Virginia

Source Type:Master's Thesis



Date of Publication:

© 2009 All Rights Reserved.