Peroxiredoxin expression in the endocrine pancreas and their regulation by pro-inflammatory cytokines

by Romanus, Pierre

Abstract (Summary)
Pro-inflammatory cytokines released from immune cells infiltrating the endocrine pancreas in Type 1 Diabetes (T1D) induce the generation of reactive oxygen and nitrogen species (ROS/RNS). Cytokines are in part cytotoxic to ?Ò-cells via the production of peroxynitrite (ONOO-). ?Ò-cell are weakly protected against the toxicity of ROS/RNS because of limited expression of antioxidant enzymes. The purpose of this study was to evaluate the expression and regulation of Peroxiredoxins (Prdxs/PRDXs), a new family of antioxidant enzymes in islet ?Ò-cell. Peroxiredoxin 5 (Prdx5) is ubiquitously expressed in mammals and it exhibits a range of cellular roles including cytoprotective antioxidant defence. Human PRDX5 possesses a peroxynitrite reductase activity but its role in ?Ò-cell defence was not investigated yet. In a first set of experiments, the localization of the Prdx family was analyzed in rodent pancreas. Prdx1 was preferentially found in the non-b-cells of the islet and in exocrine tissue. Prdx2, Prdx3 and Prdx5 were present in b and non-b-cells, while Prdx4 and Prdx6 were poorly expressed. Then, we investigated the modulation of Prdx mRNA and protein expression levels by cytokines in adult rat isolated islets. Prdx1, Prdx2 and Prdx3 expression was not modified while Prdx5 mRNA was upregulated. However, Prdx5 protein was downregulated, which could involve ubiquitination and proteasomal degradation. Little is known about the PRDX antioxidant enzyme expression in human islets. In a second set of experiments, we investigated the expression and regulation of the 6 PRDXs in human islet preparations facing the context of T1D pathogenesis. PRDX 2, 3, 5, 6 were observed in the exocrine part of the pancreas. PRDX2 and PRDX6 were preferentially expressed in islet ?Ñ cells rather than in ?Ò cells. PRDX3 and PRDX5 were localized in ?Ñ cells as well as in ?Ò cells. PRDX4 was detected neither in exocrine nor in endocrine tissue. Islets exposed to a mixture of cytokines showed a downregulation of PRDX2, 3, 5, 6 mRNA expression, as was also the case for PRDX5 protein. This study demonstrated that a clear difference between human and rodent species does exist in terms of tissue localization, expression and regulation of Prdxs by cytokines. Finally, we performed Prdx5 overexpression or silencing in insulin secreting cell line INS-1E. Overexpression of Prdx5 was effective against a stress induced by SIN-1 but not against the cytokines mixture. On the opposite, silencing Prdx5 expression decreased the cell viability. Then, the hypothesis that the vulnerability of islets to cytokines mixture was due to the Prdx5 downregulation was not demonstrated. However, the modification of Prdx5 expression would in part be responsible for the high sensitivity of ?Ò-cell to peroxynitrite. In conclusion, this study featured the presence of some Prdxs/PRDXs in islet cells, and the regulation of their expression by cytokines. They intervene in protection against ONOO- toxicity but their implication against cytokine agression remain to be more precisely evaluated.
Bibliographical Information:


School:Université catholique de Louvain

School Location:Belgium

Source Type:Master's Thesis

Keywords:islets peroxiredoxins oxidative stress cytokines


Date of Publication:11/28/2008

© 2009 All Rights Reserved.