Details

Peptide-Based Inhibitors of Hepatitis C Virus NS3 Serine Protease: Kinetic Aspects and Inhibitor Design

by Poliakov, Anton

Abstract (Summary)
Hepatitis C is a serious disease that affects about 200 million people worldwide. No anti-HCV vaccine or specific anti-viral drugs are available today. Non-structural protein 3 (NS3) of HCV is a bifunctional serine protease/helicase, and the protease has become a prime target in the search for anti-HCV drugs.In this work, the complete HCV NS3 gene has been cloned and expressed, and the protein has been purified using affinity chromatography. An assay for measuring the protease activity of full-length NS3 protease has been developed and used for inhibition studies.A series of peptide-based inhibitors of NS3 protease varying in length, the composition of the side-chain and the N- and C-terminal groups have been studied. Potent tetra-, penta- and hexapeptide inhibitors of the NS3 protease were discovered. Hexapeptides with an acyl sulfonamide C-terminal residue were the most potent inhibitors of the NS3 protease, having nanomolar Ki-values. The selectivity of the inhibitors was assessed using other serine and cysteine proteases. NS3 protease inhibitors with electrophilic C-terminal groups were non-selective while those comprising a C-terminal carboxylate or acyl sulfonamide group were selective. All inhibitors with a small hydrophobic P1 side-chain residue were non-selective for the NS3 protease, being good inhibitors of human leukocyte elastase. This result highlights the importance of the P1 residue for inhibitor selectivity, which stems from the major role of this residue in determining substrate specificity of serine proteases.Electrophilic inhibitors often cause slow-binding inhibition of serine and cysteine proteases. This was observed with other proteases used in our work but not with NS3 protease, which indicates that mechanism of inhibition of NS3 protease by electrophilic inhibitors may not involve formation of a covalent bond.The structure-activity relationships obtained in this work can be used for improvement of peptide-based inhibitors of HCV NS3 protease towards higher inhibitory potency and selectivity.
Bibliographical Information:

Advisor:

School:Uppsala universitet

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:NATURAL SCIENCES; Chemistry; Biochemistry; Biochemistry; serine protease; inhibitor; slow-binding; protein purification; Biokemi

ISBN:91-554-5905-6

Date of Publication:01/01/2004

© 2009 OpenThesis.org. All Rights Reserved.