Particle Filter Based Mosaicking for Forest Fire Tracking Particle Filter Based Mosaicking for Forest Fire Tracking

by Bradley, Justin Mathew

Abstract (Summary)
Using autonomous miniature air vehicles (MAVs) is a cost-effective, simple method for collecting data about the size, shape, and location characteristics of a forest fire. However, noise in measurements used to compute pose (location and attitude) of the on-board camera leads to significant errors in the processing of collected video data. Typical methods using MAVs to track fires attempt to find single geolocation estimates and filter that estimate with subsequent observations. While this is an effective method of resolving the noise to achieve a better geolocation estimate, it reduces a fire to a single point or small set of points. A georeferenced mosaic is a more effective method for presenting information about a fire to fire fighters. It provides a means of presenting size, shape, and geolocation information simultaneously. We describe a novel technique to account for uncertainty in pose estimation of the camera by converting it to the image domain. We also introduce a new concept, a Georeferenced Uncertainty Mosaic (GUM), in which we utilize a Sequential Monte Carlo method (a particle filter) to resolve that uncertainty and construct a georeferenced mosaic that simultaneously shows size, shape, geolocation, and uncertainty information about the fire.
Bibliographical Information:


School:Brigham Young University

School Location:USA - Utah

Source Type:Master's Thesis

Keywords:mav uav forest fire tracking mosaic particle filter remote sensing computer vision sequential monte carlo magicc lab infrared geolocation bayesian filtering


Date of Publication:07/06/2007

© 2009 All Rights Reserved.