Optimizing the ion source for polarized protons.

by Johnson, Samantha

Abstract (Summary)
Beams of polarized protons play an important part in the study of the spin dependence of the nuclear force by measuring the analyzing power in nuclear reactions. The source at iThemba LABS produces a beam of polarized protons that is pre-accelerated by an injector cyclotron (SPC2) to a energy of 8 MeV before acceleration by the main separated-sector cyclotron to 200 MeV for physics research. The polarized ion source is one of the two external ion sources of SPC2. Inside the ion source hydrogen molecules are dissociated into atoms in the dissociator and cooled to a temperature of approximately 30 K in the nozzle. The atoms are polarized by a pair of sextupole magnets and the nucleus is polarized by RF transitions between hyperfine levels in hydrogen atoms. The atoms are then ionized by electrons in the ionizer. The source has various sensitive devices, which influence beam intensity and polarization. Nitrogen gas is used to prevent recombination of atoms after dissociation. The amount of nitrogen and the temperature at which it is used plays a very important role in optimizing the beam current. The number of electrons released in the ionizer is influenced by the size and shape of the filament. Optimization of the source will ensure that beams of better quality (a better current and stability) are produced.
Bibliographical Information:


School:University of the Western Cape/Universiteit van Wes-Kaapland

School Location:South Africa

Source Type:Master's Thesis

Keywords:ion sources beam dynamics heavy accelerators particle acceleration


Date of Publication:01/01/2005

© 2009 All Rights Reserved.