Details

Numerical treatment of the Black-Scholes variational inequality in computational finance

by Mautner, Karin

Abstract (Summary)
In der Finanzmathematik hat der Besitzer einer amerikanische Option das Recht aber nicht die Pflicht, eine Aktie innerhalb eines bestimmten Zeitraums, für einen bestimmten Preis zu kaufen oder zu verkaufen. Die Bewertung einer amerikanische Option wird als so genanntes optimale stopping Problem formuliert. Erfolgt die Modellierung des Aktienkurses durch eine geometrische Brownsche Bewegung, wird der Wert einer amerikanischen Option durch ein deterministisches freies Randwertproblem (FRWP), oder einer äquivalenten Variationsungleichung (VU) auf ganz R in gewichteten Sobolev Räumen gegeben. Um Standardmethoden der Numerischen Mathematik anzuwenden, wird das unbeschränkte Gebiet zu einem beschränkten Gebiet abgeschnitten. Mit Hilfe der Fourier-Transformation wird eine Integraldarstellung der Lösung die den freien Rand explizit beinhaltet, hergeleitet. Mittels dieser Integraldarstellung werden Abschneidefehlerschranken bewiesen. Danach werden gewichtete Poincare Ungleichungen mit expliziten Konstanten bewiesen. Der Abschneidefehler und die gewichtete Poincare Ungleichung ermöglichen, einen zuverlässigen a posteriori Fehlerschätzer zwischen der exakten Lösung der VU und der semidiskreten Lösung des penalisierten Problems auf R herzuleiten. Eine hinreichend glatte Lösung der VU garantiert die Konvergenz der Lösung des penaltisierten Problems zur Lösung der VU. Ein a priori Fehlerschätzer für den Fehler zwischen der exakten Lösung der VU und der semidiskreten Lösung des penaltisierten Problems beendet die numerische Analysis. Die eingeführten aposteriori Fehlerschätzer motivieren einen Algorithmus für adaptive Netzverfeinerung. Numerische Experimente zeigen die verbesserte Konvergenz des adaptiven Verfahrens gegenüber der uniformen Verfeinerung. Der zuverlässige a posteriori Fehlerschätzer ermöglicht es, den Abschneidepunkt so zu wählen, dass der Gesamtfehler (Diskretisierungsfehler plus Abschneidefehler) kleiner als eine gegebenen Toleranz ist.
This document abstract is also available in English.
Document Full Text
The full text for this document is available in English.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Mathematik Amerikanische Optionen

ISBN:

Date of Publication:02/16/2007

© 2009 OpenThesis.org. All Rights Reserved.