Details

Numerical methods for the valuation of financial derivatives.

by Ntwiga, Davis Bundi

Abstract (Summary)
Numerical methods form an important part of the pricing of financial derivatives and especially in cases where there is no closed form analytical formula. We begin our work with an introduction of the mathematical tools needed in the pricing of financial derivatives. Then, we discuss the assumption of the log-normal returns on stock prices and the stochastic differential equations. These lay the foundation for the derivation of the Black Scholes differential equation, and various Black Scholes formulas are thus obtained. Then, the model is modified to cater for dividend paying stock and for the pricing of options on futures. Multi-period binomial model is very flexible even for the valuation of options that do not have a closed form analytical formula. We consider the pricing of vanilla options both on non dividend and dividend paying stocks. Then show that the model converges to the Black-Scholes value as we increase the number of steps. We discuss the Finite difference methods quite extensively with a focus on the Implicit and Crank-Nicolson methods, and apply these numerical techniques to the pricing of vanilla options. Finally, we compare the convergence of the multi-period binomial model, the Implicit and Crank Nicolson methods to the analytical Black Scholes price of the option. We conclude with the pricing of exotic options with special emphasis on path dependent options. Monte Carlo simulation technique is applied as this method is very versatile in cases where there is no closed form analytical formula. The method is slow and time consuming but very flexible even for multi dimensional problems.
Bibliographical Information:

Advisor:

School:University of the Western Cape/Universiteit van Wes-Kaapland

School Location:South Africa

Source Type:Master's Thesis

Keywords:derivative securities valuation mathematical models investments monte carlo method

ISBN:

Date of Publication:01/01/2005

© 2009 OpenThesis.org. All Rights Reserved.