Details

Nuclear Magnetic Resonance with the Distant Dipolar Field

by Corum, Curtis A.

Abstract (Summary)
Distant dipolar field (DDF)-based nuclear magnetic resonance is an active research area with many fundamental properties still not well understood. Already several intriguing applications have developed, like HOMOGENIZED and IDEAL spectroscopy, that allow high resolution spectra to be obtained in inhomogeneous fields, such as in-vivo. The theoretical and experimental research in this thesis concentrates on the fundamental signal properties of DDF-based sequences in the presence of relaxation (T1 and T2) and diffusion. A general introduction to magnetic resonance phenomenon is followed by a more in depth introduction to the DDF and its effects. A novel analytical signal equation has been developed to describe the effects of T2 relaxation and diffusing spatially modulated longitudinal spins during the signal build period of an HOMOGENIZED cross peak. Diffusion of the longitudinal spins results in a lengthening of the effective dipolar demagnetization time, delaying the re-phasing of coupled anti-phase states in the quantum picture. In the classical picture the unwinding rate of spatially twisted magnetization is no longer constant, but decays exponentially with time. The expression is experimentally verified for the HOMOG-
Bibliographical Information:

Advisor:

School:The University of Arizona

School Location:USA - Arizona

Source Type:Master's Thesis

Keywords:

ISBN:

Date of Publication:

© 2009 OpenThesis.org. All Rights Reserved.