Details

Nonnegative matrix factorization algorithms and applications

by Ho, Ngoc-Diep

Abstract (Summary)
Data-mining has become a hot topic in recent years. It consists of extracting relevant information or structures from data such as: pictures, textual material, networks, etc. Such information or structures are usually not trivial to obtain and many techniques have been proposed to address this problem, including Independent Component Analysis, Latent Sematic Analysis, etc. Nonnegative Matrix Factorization is yet another technique that relies on the nonnegativity of the data and the nonnegativity assumption of the underlying model. The main advantage of this technique is that nonnegative objects are modeled by a combination of some basic nonnegative parts, which provides a physical interpretation of the construction of the objects. This is an exclusive feature that is known to be useful in many areas such as Computer Vision, Information Retrieval, etc. In this thesis, we look at several aspects of Nonnegative Matrix Factorization, focusing on numerical algorithms and their applications to different kinds of data and constraints. This includes Tensor Nonnegative Factorization, Weighted Nonnegative Matrix Factorization, Symmetric Nonnegative Matrix Factorization, Stochastic Matrix Approximation, etc. The recently proposed Rank-one Residue Iteration (RRI) is the common thread in all of these factorizations. It is shown to be a fast method with good convergence properties which adapts well to many situations.
Bibliographical Information:

Advisor:

School:Université catholique de Louvain

School Location:Belgium

Source Type:Master's Thesis

Keywords:approximation factorization nonnegative matrix low rank data mining numerical algorithm

ISBN:

Date of Publication:06/09/2008

© 2009 OpenThesis.org. All Rights Reserved.