Details

Non-perturbative renormalization of the B-meson axial current

by Kurth, Martin

Abstract (Summary)
Diese Arbeit befasst sich mit dem Problem der nichtperturbativen Renormierung des Axialstroms eines leichten und eines Bottom-Quarks. Solche nichtperturbativen Berechnungen koennen nur in der Gitter-QCD durchgefuehrt werden, d. h. die kontinuierliche Raumzeit wird durch ein vierdimensionales hyperkubisches Gitter ersetzt. Da einerseits die Kantenlaenge des Gitters groesser sein muss als typische physikalische Laengenskalen des Problems, andererseits aber der durch die Gitterkonstante eingefuehrte Energie-Cutoff groesser sein muss als die Masse des b-Quarks, sind fuer dieses Problem Gittergroessen erforderlich, fuer die die heutige Computerleistung nicht ausreicht. Es ist daher sinnvoll, das B-Meson in der statischen Naeherung zu untersuchen, um dann zwischen dieser Naeherung und leichten Quarkmassen interpolieren zu koennen. Die Renormierung des Axialstroms in der statischen Naeherung ist skalenabhaengig. Um zu vermeiden, Rechnungen ueber einen grossen Energiebereich hinweg auf einem einzigen Gitter durchfuehren zu muessen, wird als Renormierungsverfahren das SF-Schema vorgeschlagen, in dem die Renormierungsskala mit der inversen Kantenlaenge des Raumzeitvolumens identifiziert wird. Das zentrale Objekt dieses Schemas ist die Step-Scaling-Funktion, die die Renormierungskonstanten bei verschiedenen Skalen miteinander in Beziehung setzt. Ein wesentlicher Punkt dieser Arbeit ist die O(a)-Verbesserung, die die Diskretisierungsfehler reduziert. Nach einer Erklaerung dieses Verfahrens fuer Eichfelder und leichte Quarks wird die statische Approximation im Kontinuum und auf dem Gitter eingefuehrt, und die in der Gittertheorie erforderlichen O(a)-Verbesserungsterme werden diskutiert. Fuer die eigentliche Renormierung werden Schroedinger-Funktional- Randbedingungen analog zum Fall leichter Quarks auch fuer die statische Approximation eingefuehrt, und die durch diese Randbedingungen notwendige zusaetzliche O(a)-Verbesserung diskutiert. Anschliessend wird durch eine Renormierungsbedingung das SF-Schema fuer den statischen Axialstrom definiert. Im weiteren Verlauf der Arbeit steht die Entwicklung geigneter Korrelationsfunktionen in der Einschleifennaeherung im Mittelpunkt. In dieser Naeherung wird zunaechst der renormierte statische Axialstrom im Gitter-MS-Schema untersucht, und seine Beziehung zum Axialstrom zweier leichter Quarks in der Stromalgebra-Normierung berechnet. Hierbei wird Uebereinstimmung mit einem Ergebnis anderer Autoren aus einer anderen Methode festgestellt. Aus diesem Ergebnis wird die endliche Renormierung zwischen dem statischen Strom im Gitter-MS-Schema und dem statischen Strom im MS-bar-Schema bestimmt. Diese Renormierungskonstante wird dann benutzt, um den Umrechnungsfaktor vom SF-Schema in das MS-bar-Schema in der Einschleifennaeherung zu berechnen. Die Zweischleifennaeherung der anomalen Dimension des statischen Axialstroms im SF-Schema wird dann durch Umrechnung aus dem MS-bar-Schema bestimmt. Diese Groesse ist vor allem deshalb wichtig, weil sie benoetigt wird, um bei Energieskalen von 10-100 GeV aus nichtperturbativ gewonnenen Ergebnissen den renormierungsgruppeninvarianten statischen Axialstrom zu berechnen. Es zeigt sich, dass der Zweischleifenwert dieser anomalen Dimension klein ist. Ein weiterer Untersuchungsgegenstand sind die Diskretisierungsfehler in der Step-Scaling-Funktion, die in der Einschleifennaeherung berechnet wurden. Sie stellen sich ebenfalls als klein heraus. Abschliessend wird der Einschleifen-Koeffizient des O(a)-Verbesserungsterms fuer den statischen Axialstrom berechnet. Hierbei ergibt sich Uebereinstimmung mit einem frueheren Ergebnis anderer Autoren.
This document abstract is also available in English.
Document Full Text
The full text for this document is available in English.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Physik, Astronomie statische Approximation O(a)-Verbesserung Physik

ISBN:

Date of Publication:08/31/2000

© 2009 OpenThesis.org. All Rights Reserved.