Multiple vehicle positioning simulation and optimization [electronic resource] /

by Zawodny, Erica Frances.

Abstract (Summary)
ABSTRACT: There is a wealth of research being performed in the area of autonomous vehicles. Much of the research involves development of platforms and integration of computers and various sensors to create an intelligent robot. With the development of multiple robotic agents comes an interest in multiple robot interaction. There are two limiting factors with this type of research: robot cost and robot size. Therefore, much of the research is performed in simulation initially and later implemented on actual systems. In order to optimally place robots throughout a region an algorithm should first be developed and tested in simulation. Related work has been done on optimal placement of sonar beacons throughout a region for a beacon based navigation system. There are several issues that need to be addressed when positioning multiple robots. The number of robots to be placed, the size of the region, the obstacle locations within the region, and sensor limitations are all important issues that are addressed in the solution of this problem. In addition, the optimization technique chosen will have significant effect on the results and the time it takes to determine a solution. This raises the issue of how to determine where the robots should be positioned for a given environment. This particular problem is an optimal placement type of problem. Problems of this nature and search problems can be solved using genetic algorithms.
Bibliographical Information:


School:University of Florida

School Location:USA - Florida

Source Type:Master's Thesis

Keywords:agent algorithm control genetic multiple optimization robot


Date of Publication:

© 2009 All Rights Reserved.