Details

Multidimensional local skew-fields

by Zheglov, Alexander

Abstract (Summary)
In der gegebenen Arbeit werden hoeherdimensionale lokale Schiefkoerper, die natuerliche Verallgemeinerung von n-dimensionalen lokalen Koerpern, untersucht. Wir untersuchen nur Schiefkoerper mit kommutativem Restschiefkoerper. Wir geben eine hinreichende Bedingung fuer die Spaltbarkeit von Schiefkoerpern. Naemlich, ein lokaler Schiefkoerper ist spaltbar, falls er einen kanonischen Automorphismus unendlicher Ordnung hat. Wir klassifizieren alle Schiefkoerper, die diese Bedingung bis auf Isomorphie erfuellen. Die Ergebnisse sind unabhaengig von der Charakteristik des Schiefkoerpers. Wir klassifizieren auch alle lokalen spaltbaren Schiefkoerper von Charakteristik 0 mit kommutativem Restschiefkoerper und mit kanonischem Automorphismus von endlicher Ordnung. Unter anderem geben wir ein Kriterium, wann zwei Elemente aus einem solchen Schiefkoerper konjugiert sind. Als Folgerung beweisen wir, dass fast alle solche Schiefkoerper unendlichdimensional ueber ihrem Zentrum sind. Ausserdem beweisen wir, dass das Skolem-Noether Theorem nur in dem Fall des klassischen Ringes der Pseudodifferentialoperatoren richtig ist. Dann erhalten wir Anwendungen dieser Theorie auf die Krichever Korrespondenz. Naemlich, wir bekommen Verallgemeinerungen von klassischen KP-Gleichungen (Hierarchie). Die Untersuchung von lokalen Schiefkoerpern fuehrte zu einigen neuen unerwarteten Ergebnissen in der Bewertungstheorie auf endlichdimensionalen Algebren. Wir bekommen den Zerlegungssatz fuer wilde Divisionalgebren ueber Laurentreihen-Koerpern mit beliebigem Restkoerper der Charakteristik groesser als zwei. Dieses Theorem ist die Verallgemeinerung des Zerlegungssatzes fuer zahme Divisionalgebren von Jacob und Wadsworth. Als Folgerung bekommen wir die positive Antwort auf die folgende Vermutung: Fuer jede Divisionalgebra A ueber den Koerper F((t)), wo F ein quasialgebraisch abgeschlossener Koerper ist, muss der Exponent von A gleich dem Index von A sein. Dann erhalten wir Anwendungen dieser Theorie auf die Krichever Korrespondenz. Naemlich, wir bekommen Verallgemeinerungen von klassischen KP-Gleichungen (Hierarchie). Anderseits, fuehrt das Problem der Klassifizierung lokaler Schiefkoerper zu dem Problem der Klassifizierung der Konjugationsklassen in der Automorphismengruppe von n-dimensionalen lokalen (kommutativen) Koerpern. Wir loesen diese Aufgabe fuer die Gruppe der stetigen Automorphismen von 1- und 2-dimensionalen lokalen Koerpern.
This document abstract is also available in English.
Document Full Text
The full text for this document is available in English.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Mathematik n-dimensionale lokale Koerper Krichever Korrespondenz.

ISBN:

Date of Publication:07/10/2002

© 2009 OpenThesis.org. All Rights Reserved.