Details

Modelos QSPR/QSAR/QSTR basados en sistemas neuronales cognitivos

by Espinosa Porragas, Gabriela

Abstract (Summary)
RESUMEN Un área sumamente interesante dentro del modelado molecular es el diseño de nuevos compuestos. Con sus propiedades definidas antes de ser sintetizados. Los métodos QSPR/QSAR han demostrado que las relaciones entre la estructura molecular y las propiedades físico químicas o actividades biológicas de los compuestos se pueden cuantificar matemáticamente a partir de parámetros estructurales simples. Las redes neuronales (ANN) constituyen una alternativa para el desarrollo de algoritmos predictivos aplicados en diversos campos como: análisis masivo de bases de datos, para subsanar los obstáculos derivados de la selección o la multicolinealidad de variables, así como la sensibilidad de los modelos a la presencia de ruido en los datos de entrada al sistema neuronal. En la mayoría de los casos, las redes neuronales han dado mejores resultados que los métodos de regresión multilineal (MLR), el análisis de componentes principales (PCA), o los métodos de mínimos cuadrados parciales (PLS) debido a la no linealidad inherente en los modelos de redes. En los últimos años el interés por los modelos QSPR/QSAR basados en redes neuronales se ha incrementado. La principal ventaja de los modelos de redes recae en el hecho que un modelo QSAR/QSPR puede desarrollarse sin especificar a priori la forma analítica del modelo. Las redes neuronales son especialmente útiles para establecer las complejas relaciones existentes entre la salida del modelo (propiedades físico químicas o biológicas) y la entrada del modelo (descriptores moleculares). Además, permiten clasificar los compuestos de acuerdo a sus descriptores moleculares y usar esta información para seleccionar el conjunto de índices capaz de caracterizar mejor al conjunto de moléculas. Los modelos QSPR basados en redes usan principalmente algoritmos del tipo backpropagation. Backpropagation es un sistema basado en un aprendizaje por minimización del error. Sin embargo, ya que los compuestos químicos pueden clasificarse en grupos de acuerdo a su similitud molecular, es factible usar un clasificador cognitivo como fuzzy ARTMAP para crear una representación simultánea de la estructura y de la propiedad objetivo. Este tipo de sistema cognitivo usa un aprendizaje competitivo, en el cual hay una activa búsqueda de la categoría o la hipótesis cuyos prototipos provean una mejor representación de los datos de entrada (estructura química). En el presente trabajo se propone y se estudia una metodología que integra dos sistemas cognitivos SOM y fuzzy ARTMAP para obtener modelos QSAR/QSPR. Los modelos estiman diferentes propiedades como las temperaturas de transición de fase (temperatura de ebullición, temperatura de fusión) y propiedades críticas (temperatura y presión), así como la actividad biológica de compuestos orgánicos diversos (indicadores de toxicidad). Dentro de este contexto, se comparan la selección de variables realizados por métodos tradicionales (PCA, o métodos combinatorios) con la realizada usando mapas auto-organizados (SOM). El conjunto de descriptores moleculares más factible se obtiene escogiendo un representante de cada categoría de índices, en particular aquel índice con la correlación más alta con respecto a la propiedad objetivo. El proceso continúa añadiendo índices en orden decreciente de correlación. Este proceso concluye cuando una medida de disimilitud entre mapas para los diferentes conjuntos de descriptores alcanza un valor mínimo, lo cual indica que el añadir descriptores adicionales no provee información complementaria a la clasificación de los compuestos estudiados. El conjunto de descriptores seleccionados se usa como vector de entrada a la red fuzzy ARTMAP modificada para poder predecir. Los modelos propuestos QSPR/QSAR para predecir propiedades tanto físico químicas como actividades biológicas predice mejor que los modelos obtenidos con métodos como backpropagation o métodos de contribución de grupos en los casos en los que se apliquen dichos métodos.
This document abstract is also available in English.
Bibliographical Information:

Advisor:Arenas Moreno, Alex; Giralt Prat, Francesc

School:Universitat Rovira i Virgili

School Location:Spain

Source Type:Master's Thesis

Keywords:departament d enginyeria química

ISBN:

Date of Publication:09/16/2002

© 2009 OpenThesis.org. All Rights Reserved.