Details

Metamaterial : A field magnitude dependent and frequency independent model

by Ardavan, Mehdi

Abstract (Summary)
In all attempts to analyze and realize Left-Handed materials, so far, most researchers have used the same idea of extracting only some or certain behaviors of Metamaterials from a set of unit cells gathered together in a designed order. Nevertheless meeting all criteria in order to consider a media as real double-negative material has never come true.Starting with criticizing and arguing the validity of calling any set of unit cells as a medium of propagation, the work at hand will go further demonstrating analogies between a medium which could be assigned permittivity or permeability factors and the medium consisting a set of unit cells.After presenting the critical analysis on previous studies in the field, here it is shown that it is impossible to build Metamaterials using any number of passive unit cells. A deep insight into the concept of phase and group velocities as well as Poynting’s vector will reveal weakness of the public perception of their relation with each other. Unlike the past and current trend in analyzing these two velocities in meta-materials, they will be proven to possess the same direction.Moreover, in this work, a solid proof over violation of energy conservation in the intersection plane between a normal material and a Left Handed material is presented which requires us to believe and accept generation of energy at this plane. This view will consequently leave meaningless all attempts to build meta-materials by passive elements.In present work a method is proposed at which a material with positive permittivity and permeability can behave like and yield all characteristics of Metamaterials only if the foregoing parameters, while remaining positive, can vary and be governed by the magnitude of the electromagnetic field. Independence of this method from frequency broadens the range of its application and also the interest it may attract.
Bibliographical Information:

Advisor:

School:Högskolan i Gävle

School Location:Sweden

Source Type:Master's Thesis

Keywords:metamaterials field magnitude dependent model periodic structures fdtd

ISBN:

Date of Publication:09/18/2008

© 2009 OpenThesis.org. All Rights Reserved.