Details

Mechanical Testing and Evaluation of Epoxy Resins at Cryogenic Temperatures

by Jackson, Justin Reed

Abstract (Summary)
The objective of this research is to develop a test methodology to be used in determining which material properties affect the ultimate performance of a composite overwrapped pressure vessel (COPV) at liquid nitrogen (LN2) temperatures. The test methodology being evaluated is based on that used for ambient performance of COPVs and includes: resin properties, resin/fiber interface and COPV burst data. The suitability of these tests at LN2 temperatures will be evaluated. The resin properties are investigated by use of tensile tests to determine: strain to failure (%å), failure stress (óys), and elastic modulus (E). TThe objective of this research is to develop a test methodology to be used in determining which material properties affect the ultimate performance of a composite overwrapped pressure vessel (COPV) at liquid nitrogen (LN2) temperatures. The test methodology being evaluated is based on that used for ambient performance of COPVs and includes: resin properties, resin/fiber interface and COPV burst data. The suitability of these tests at LN2 temperatures will be evaluated. The resin properties are investigated by use of tensile tests to determine: strain to failure (%å), failure stress (óys), and elastic modulus (E). The resin/fiber interface is evaluated using short beam shear tests to determine the interlaminar shear strength (ILSS). These properties are compared with actual COPV burst pressures performed at ambient and LN2 temperatures. If a correlation can be found, this research lays the foundation for a method to quickly and efficiently screen candidate material systems for composite overwrapped pressure vessel (COPV) fabrication.he resin/fiber interface is evaluated using short beam shear tests to determine the interlaminar shear strength (ILSS). These properties are compared with actual COPV burst pressures performed at ambient and LN2 temperatures. If a correlation can be found, this research lays the foundation for a method to quickly and efficiently screen candidate material systems for composite overwrapped pressure vessel (COPV) fabrication.
Bibliographical Information:

Advisor:Judy Schneider

School:Mississippi State University

School Location:USA - Mississippi

Source Type:Master's Thesis

Keywords:mechanical engineering

ISBN:

Date of Publication:11/29/2005

© 2009 OpenThesis.org. All Rights Reserved.