by Lima, Marcelo de

Abstract (Summary)
Porcine reproductive and respiratory syndrome virus (PRRSV) was isolated for the first time in 1991 and since then it has been associated with significant economic losses to the pig industry worldwide. Although vaccination against PRRSV is widely used, an important advance would be the development of marker vaccines allowing serologic discrimination between vaccinated and naturally infected animals. The present study aimed to identify immunogenic and conserved regions dispensable to viral replication in different PRRSV proteins, which could be used as negative serologic markers in a new generation of liveattenuated vaccines. A fine mapping of B-cell linear epitopes in different PRRSV proteins by Pepscan is presented in the first part of this thesis. The results indicated the presence of several B-cell linear epitopes in the non-structural protein 2 (Nsp2) and in all structuralproteins encoded by PRRSV, which were consistently recognized by antibodies raised in pigs experimentally infected with a North American strain of the virus (NVSL97-7895). The Nsp2 was found to harbor the highest frequency of immunodominant epitopes (n=18) when compared to structural proteins. In the structural proteins, epitopes consistently recognized by immune sera were located in all studied proteins. Overall, the highest degree of immunogenicity and conservation was exhibited by two epitopes identified in the C-terminal end of the M protein (ORF6). The antibodies recognizing the immunodominant epitopes of each protein were detected as early as days 7 to 15 post-infection (p.i.) and remained detectable until the end of the experiment (day 90 p.i). Based on their immunodominance and level of amino acid (aa) conservation, two target epitopes were selected to serve as serologicalmarker candidates in each of the following PRRSV proteins: Nsp2, GP3 and M. These epitopes were deleted in the wild-type cDNA infectious clone (FL-12) by site-directedmutagenesis. The results of this study are presented in the second part of this thesis. A Nsp2 mutant virus (FLdNsp2/44) was successfully rescued following RNA transfection in MARC 145 cells. This epitope deletion mutant fulfilled the requirements for a differential vaccine virus such as efficient growth in vitro and in vivo and induction of active seroconversion as measured by a commercial ELISA kit associated with the absence of a marker-specific peptide-ELISA response in 100% (n=15) of the vaccinated animals. In vitro and in vivo characterization of the mutant virus clearly showed that removal of a 15-mer Nsp2 epitope had no effect on the immunogenicity, growth properties or virulence when compared to the wild type virus. On the other hand, deletions of previously identified peptide markercandidates within GP3 and M genes were shown to be lethal for virus viability in vitro. Alternatively, by substitution of 5aa at a time within a M peptide marker candidate, a viable mutant virus could be recovered although it still resulted in a ?positive marker? virus. In summary, our results provide proof of concept that PRRSV marker vaccines can be developed using such methodology. Taken together, these data indicate that the combination of a mutant virus carrying a deletion of an immunodominant epitope and the corresponding peptide ELISA represents an attractive approach for the development of PRRSV differential modified-live vaccines.
This document abstract is also available in Portuguese.
Bibliographical Information:

Advisor:Rudi Weiblen; Luiz Carlos Kreutz; Eduardo Furtado Flores; Luizinho Caron; Luciane Teresinha Lovato

School:Universidade Federal de Santa Maria

School Location:Brazil

Source Type:Master's Thesis

Keywords:B-cell linear epitopes PRRSV Pepscan peptides infectious cDNA clone sitedirected mutagenesis marker vaccines


Date of Publication:02/25/2008

© 2009 All Rights Reserved.