Machine vision applications in UAVs for autonomous aerial refueling and runway detection [electronic resource] /

by Rowe, Larry W.

Abstract (Summary)
Machine Vision Applications in UAVs for Autonomous Aerial Refueling and Runway Detection Larry W. Rowe II This research focuses on the application of Machine Vision (MV) techniques and algorithms to the problems of Autonomous Aerial Refueling (AAR) and Runway Detection. In particular, real laboratory based hardware was used in a simulated environment to emulate real-life conditions for AAR. It was shown that the K-Means Clustering Algorithm solution to the Marker Detection problem could be executed at a frame rate of 30 Hz and it averaged a tracking error of less than one pixel while utilizing only 0.16% of the image. It was also shown that the solution to the Runway Detection problem could be executed at a frame rate of 20 Hz which is acceptable for use in an UAV performing reconnaissance work. Data from these tests suggest that both software schemes are suitable for applications in moving vehicles and that the accuracy of the measurements produced by the schemes make them suitable for UAV applications.
Bibliographical Information:


School:West Virginia University

School Location:USA - West Virginia

Source Type:Master's Thesis

Keywords:computer vision airplanes runway localizing beacons drone aircraft


Date of Publication:

© 2009 All Rights Reserved.